
Bootstrapping Software Distributions

Pietro Abate
Univ Paris Diderot, PPS,
UMR 7126, Paris, France

Pietro.Abate@pps.univ-paris-diderot.fr

Johannes Schauer
Jacobs University Bremen,

College Ring 3, MB670,
28759 Bremen

j.schauer@jacobs-university.de

ABSTRACT
New hardware architectures and custom coprocessor exten-
sions are introduced to the market on a regular basis. While
it is relatively easy to port a software stack to a new plat-
form, FOSS distributions face major challenges. Porting
FOSS distributions to a new platform proved to be a year-
long manual process in the past due to a large amount of
dependency cycles which had to be broken by hand.

With this work we provide tools to analyse dependency
relationships to refine components’ meta data and to create
a build order for automatically bootstrapping a binary based
software distribution on a new platform.

1. INTRODUCTION
In recent years, the mobile and embedded device mar-

ket have driven innovators to produce a large number of
new devices and hardware platforms. In order to acceler-
ate the adoption of a these new products, major commer-
cial vendors chose to provide applications developers with
a platform agnostic middle-ware taking the burden to port
the software stack to new architectures or hardware plat-
forms. As a consequence, the efforts to adapt, to compile,
and to fiddle with low-level details of the middle-ware com-
ponents are completely hidden from application developers.
This model allows vendors to tightly control the number of
dependencies among different software components and to
reduce the porting procedure to a routine exercise.

The situation is different for collections of components
based on Free and Open Source Software (FOSS). Recent
efforts to provide a unified platform for mobile and desk-
top computing based on FOSS components (like Ubuntu for
phones and tablets1) reignited the need to develop a model
and tools to help distribution designers with the task to port
and natively compile software components to new platforms
with minimal effort. In this context, a software distribution
can be seen as a heavy middle-ware layer for the develop-
ment of rich content platforms.

1http://www.ubuntu.com/devices

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE 2013 Vancouver, Canada, June 17-21, 2013
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

In FOSS distributions, components are developed inde-
pendently by different communities and assembled together
in software collections. Apart from intrinsic coordination
problems associated to this distributed development model,
the number of dependencies in FOSS distributions is an or-
der of magnitude higher than what is found in proprietary
systems, posing new challenges for automation and qual-
ity assurance. Porting a FOSS distribution to a new ar-
chitecture not only involves adapting the low-level software
layer for a different hardware, but also considering the inter-
dependencies among different components and how these
can affect the compilation and packaging process.

In our context the software components forming a dis-
tribution are called packages. We differentiate packages as
source packages and binary packages. The first type are soft-
ware units that can be compiled into binary form to produce
a number of binary packages. The second are what are usu-
ally referred to as packages, that is, components that can be
installed on an operating system. Both types use meta-data
to describe their relationships to other components.

Source packages can be seen as software product lines [6]
where build dependencies identify specific configuration op-
tions to match the requirements of a family of software prod-
ucts. In the same optic, software distributions can be seen as
software products customized for a specific device [7]. Boot-
strapping a distribution to a new architecture deals with the
problem of customizing a product line for a specific archi-
tecture and to instantiate a new software product that is
consistent with the constraints imposed by the new hard-
ware.

In this paper we will present algorithms and tools to help
distribution architects with the task of analysing the depen-
dency web associated to the compilation process. First we
will provide a formal framework to reason about the boot-
strapping problem (Section 2) and in Section 3 we will show
few algorithms that we developed to untangle the depen-
dency web. In Section 4 we will provide a real application
for these algorithms using data from the Debian distribu-
tion. We will summarize our future plans and draw out
conclusions in Section 7.

1.1 The Bootstrap Process
Bootstrapping a distribution is defined as the process by

which software is compiled, assembled into deployable units
and installed on a new device/architecture without the aid
of any other pre-installed software. Different approaches are
possible, such as using virtual environments emulating the
target hardware, using a set of binaries often provided by the
hardware vendor or setting up an ad-hoc cross-compiling

environments on a machine with a different architecture.
For example ARM routinely provides an emulator before
the release of new hardware to ease its adoption while cross-
compilation is mainly used by embedded distributions as
the hardware they build binaries for is often not powerful
enough to compile software itself.

We define the architecture of the machine we compile on,
the native architecture and the architecture we compile for,
the target architecture. When native and target architecture
are the same, the process to create a new software package is
called native compilation; when they differ it is called cross
compilation. The method presented in this paper involves,
first the creation (by cross compilation) of a minimal build
system, and later the creation of the final set of binary pack-
ages on the new device (by native compilation).

Cross compiling a small subset of source packages is neces-
sary because an initial minimal set of binary packages must
exist in order to compile a larger set of source packages
natively. While it is technically possible to cross compile
the entire distribution, most binary based distributions only
support native compilation. Moreover, upstream distribu-
tors rarely support cross-compilation, adding support for it
to tens of thousands of source packages, would be a daunting
task for distribution editors.

Once a sufficient number of source packages is cross com-
piled – we call the set of binary packages produced by them
a minimal system – new source packages can be compiled
natively on the target system. The minimal system is com-
posed of a coherent set of binary packages that is able to
boot on the new hardware and to provide a minimal work-
ing system. This minimal set of binary packages contains
at the very least an operating system, a user shell and a
compiler. This initial selection is provided by distribution
architects. We developed tools to help them to refine and
complete this selection. In this paper we will assume the
existence of such minimal system and only consider mainly
the problems associated with native compilation.

Native compilation entails computing an order in which
source packages will be compiled and the binary packages
they produce will be made available on the new system.
This order is imposed by the presence of build dependen-
cies, that is, binary packages that must be available on a
system in order to create new binary packages from source
packages. Source packages without build dependencies, or
only with build dependencies that can already be satisfied
on the minimal system can be immediately be compiled and
all the resulting binary packages will be available. Source
packages that require binary package not yet available will
be scheduled for later consideration.

In an ideal situation, where the build dependency graph
entails a natural topological sort, bootstrapping a distribu-
tion for a new architecture would not pose any particular
challenge. Unfortunately, for larger distribution it is com-
mon that the build dependency graphs cannot be topologi-
cally sorted because the presence of millions of dependency
cycles.

In Figure 1 we give a simple artificial example where ver-
tices represent source packages, and edges represent depen-
dencies among source packages. For now, a dependencies
between two source packages S1, S2 is just a connection de-
fined by the fact that the package S1 in order to be compiled
requires a component that will be provided by package S2

only once S2 will be compiled.

(a) (b)

Figure 1: Bootstrapping Problem Example

In Figure 1(a) we can identify four cycles. The self cycle
of node S5 is a typical example of a cycle associated with the
source package of a programming language that requires it-
self to compile. Other cycles have length 2, 3 and 4. Even if
there are multiple ways of removing build dependency cycles,
it is not possible to develop an exact algorithm by looking at
the packages’ meta-data. Up until now, whenever the distri-
bution is to be bootstrapped, package maintainers inspected
source packages by hand to decide which dependencies are
really needed and which are optional. We developed few
heuristics to help maintainers with the task to identify such
dependencies. In Figure 1(b) we are able to obtain a di-
rected acyclic graph (DAG) by removing the dependencies
of S4 on S1, S1 on S2 and the self-loop of S5 with itself.
From it we can easily compute a build order where package
S4 and S5 will be compiled first (possibly in parallel), the
package S1, followed by S6 and finally S3 and S2.

Once all source packages are compiled, we can restart the
process, but now re-instantiating all the build dependen-
cies previously dropped. Since all binary packages have now
been compiled, the dependencies of all source packages are
satisfied and they can therefore be compiled in any order.
This recompilation is necessary to build every component
with its full feature set.

Our Contribution.
By analysing the nature of these loops and by pin-pointing

packages that are more relevant then others we provide heuris-
tics and tools to help developers and distribution editors to
reduce the burden associated to the bootstrapping process
and to reduce the time to market of a software distribution
on a new platform.

2. APPROACH
In this section we will introduce a formal framework to

model the bootstrap problem. First we will define package
repositories and the notion of installability. Then we will
explain how mixed repositories, composed of source and bi-
nary packages can be used in order to compute a compilation
plan to create a set of binary packages from a set of source
packages. Finally we will give a formal definition of the
bootstrap problem.

Packages.
A package is a tuple (n, v) where n is a package name and

v is a version. Package names are arbitrary strings, and we
assume that versions are non-negative integers.

Definition 2.1. A repository is a tuple (P,Dep,Con,Bin)
where

• P is a set of packages

• Dep : P → P(P(P)) is the dependency function (we
write P(X) for the set of subsets of X)

• Con ⊆ P × P is the conflict relation

• Bin : P → P(P) is the source function

Let B = {p | Bin(p) = ∅}. The repository must satisfy the
following conditions:

• The relation Con is symmetric i.e., (p, q) ∈ Con if and
only if (q, p) ∈ Con for all p, q ∈ P .

• Two packages with the same package name but dif-
ferent versions conflict, that is, if p = (n, v1) and
q = (n, v2) with v1 6= v2, then (p, q) ∈ Con.

• For all p ∈ P , Bin(p) ⊆ B.

• Neither binary nor source packages can depend on source
packages nor can they conflict with source packages.
For all p ∈ P , Dep(p) ⊆ B and Con(p) ⊆ B

Definition 2.2. Let (P,Dep,Con,Bin) be a repository
and let p ∈ P . If Bin(p) = ∅ then we call p a binary package
else we call p a source package.

If s ∈ P is a source package, then the set Bin(s) represents
the set of binary packages generated by s. The dependen-
cies of a binary package indicate which packages must be
installed together with it, the conflicts which packages must
not. The build dependencies of a source package identify bi-
nary packages that must be installed in order for the source
package to be compiled. Build conflicts are binary packages
that must not be installed in order to compile the source
package. As by Definition 2.1, the build dependencies of
source packages are always binary packages.

Definition 2.3. Let (P,Dep,Con,Bin) be a repository.
The dependency relation is a binary relation ↪→: P × P de-
fined as p depends on a package q if there exists D ∈ Dep(p)
such that q ∈ D.

This definition can be extended to a multi-step relation:
q is in the dependency closure of a package p if p ↪→ q in one
ore more steps. We then say p ↪→+ q.

Definition 2.4. Let (P,Dep,Con,Bin) be a repository
p ∈ P . The dependency closure of p is a subset of P defined
as

{q | q ∈ P, p ↪→+ q}

Source packages and binary packages are related. A bi-
nary package is built from a source package, and a source
package builds a set of binary packages.

Definition 2.5. Let (P,Dep,Con,Bin) a repository. The
function Src : P → P is defined as follows :

Src(p) = {s | p ∈ Bin(s)}

Installation Sets.
An installation is a consistent set of packages, that is, a

set of packages satisfying abundance (every package in the
installation has its dependencies satisfied) and peace (no two
packages in the installation are in conflict) [13]. Formally:

Definition 2.6. Let R = (P,Dep,Con,Bin) be a repos-
itory. An R-installation I is a subset I ⊆ P such that for
every p ∈ I the following properties hold:

Abundance : Every package has what it needs. Formally,
for every p ∈ I, and for every dependency D ∈ Dep(p)
we have I ∩D 6= ∅.

Peace : No two packages conflict. Formally, (I×I)∩Con =
∅.

We say that a package p is installable in a repository R if
there exists an R-installation I such that p ∈ I.

Definition 2.7. Given a repository R = (P,Dep,Con,Bin)
and a package p ∈ P . We define the partial function ISR(p) =
I to denote one R-installation such that p ∈ I.

Definition 2.8. Let R = (P,Dep,Con,Bin) be a repos-
itory and B = {p | Bin(p) = ∅}. We say that R is self
contained if the following conditions hold:

∀b ∈ B , Src(b) ∈ S
∀s ∈ S ∃ I ⊆ B such that I ∪ {s} is a R-installation

In order words a repository R is self contained if all binary
packages in R are built from the source packages in R and all
source packages in R can be built using only binary packages
in R.

Compilation.
The notion of R-installation is also general to all types of

packages. For source packages we introduce the notion of R-
compilation. Intuitively a source package s can be compiled
in a repository R if there exists an R-installation I and s ∈ I
and if all source packages used to build binary packages in
I can also be compiled.

First we define the following relation among source pack-
ages.

Definition 2.9. Let (P,Dep,Con,Bin) be a repository.
The binary relation ∼: S × S is defined as s ∼ t if there
exist a installation set I such that s ∈ I and some p ∈ I ,
t = Src(p).

We now extend the one step definition above to an arbi-
trary number of dependency steps.

Definition 2.10. The relation ∼∗: S × S is defined as
s ∼∗ t if : s ∼ t or there exists s1 · · · sn such that s ∼ s1,
sn ∼ t and si ∼ si+1 for 1 ≤ i ≤ n.

The relation ∼∗ is transitive. We define an R-compilation
of a source packages s as the closure of P under ∼∗.

Definition 2.11. Let R = (P,Dep,Con,Bin) be a repos-
itory and s a source package. An R-compilation of s is a
set I ⊆ P such that I = {t | s ∼∗ t}. We say that a source
package s ∈ S can be compiled if there exists R-compilation
I such that s ∈ I.

Lemma 2.12. Let R be a self-contained repository. Then
all source packages in R can be compiled.

Since an R-compilation for a given package is not unique,
we identify a unique subset of packages common to all R-
compilations. This subset is identified restraining Definition
2.9 to strong dependencies [1]. We quickly recall the defini-
tion :

Definition 2.13. Given a repository R, we say that a
package p in R strongly depends on a package q, written
p ⇒ q, if p is installable in R and every installation of R
containing p also contains q.

Intuitively, p strongly depends on q with respect to R if
it is not possible to install p without also installing q.

Definition 2.14. Given a repository R and a package
p ∈ R, the impact set of p in R is the set

Impact(p) = {q ∈ R | q ⇒ p}.

The impact set of p with respect to R is the set of packages
of R that it is not possible to install without also installing
p. We are now ready to provide a stronger definition of the
relation ∼.

Definition 2.15. Let R be a repository. Two source pack-
ages are related s ' t if there exist I = Impact(s) such that
s ∈ I and for some p ∈ I , t = Src(p).

In the same way as in Definition 2.10 we can define '∗
as the closure of the relation ' and finally define the Core
R-compilation as in Definition 2.11, but w.r.t. the relation
'∗. The Core R-compilation allows us to focus on a unique
subset of R-compilation sets and to provide a lower limit
to the dependencies needed in order to compile a source
package.

Remark 2.16. If an R-compilation set exists, then it is
a-priori not unique. This problem is due to the fact that
package dependencies contain disjunctions. However, be-
cause of the specific nature of the problem, in practice, this
problem does not arise too often: The number of disjunc-
tions in build dependencies are often very limited. More-
over, using specialized solvers [2], we can use heuristic to
minimize the number of packages to consider, possibly re-
ducing the number of build cycles. The restriction to core
R-compilation sets allow us to provide a lower bound of the
problem.

Source Graph.
We define the source graph associated to an R-compilation

set as follows:

Definition 2.17. Let R = (P,Dep,Con,Bin) be a self-
contained repository and I be an R-compilation set for a
set of source packages S ⊆ P . The associated build graph
G = (V,E) is defined as

• V = I

• E = {(s, t) | s, t ∈ I and s ∼ t}.

In the same way we can define the core source graph of a
core R-compilation set by using the ' relationship instead.
The core source graph is a proper subgraph of every source
graph no matter which R-compilation set is chosen.

Note that the source graph might contain loops hence it
is not possible to use a topological sort algorithm. In the
next section we will provide methods to compute the set of
packages that can be compiled in a repository and heuristics
to drop optional build dependencies from the build graph
and to generate a build order.

Definition 2.18. Given a graph (V,E), a path is a se-
quence of vertices v1 · · · vn such that for each i, 0 ≤ i ≤ n−1
, (vi, vi+1) ∈ E, that is, between every subsequent pair of
vertices there is an arc connecting them. If v1 = vn then
a path is called a cycle. A cycle is called elementary if no
vertices appear more than once in it.

2.1 Problem statement
To formally describe the bootstrap problem, we first need

to define the tools to relax dependencies constraints to, in
the end, be able to compile all source packages in a given
repository. A build profile is a function to to transform repos-
itories to make the source graph acyclic. Formally :

Definition 2.19. A build profile Pmap is a function that
transform repositories into repositories.

Let R = (P,Dep,Con,Bin) and R1 = (P,Dep1, Con1, Bin1)
such that R1 = Pmap(R). R1 must satisfy the follows con-
straints :

• Bin1 ⊆ Bin.

• If R is self contained then R1 is self contained.

• Let G and G1 be the source graphs associated respec-
tively to R and R1. Then the number of elementary
cycles of G1 is less then the number of cycles in G.

Finally we can give the formal problem statement. The
bootstrap problem is defined as a sequence of refinements
where, starting from a repository R = (P,Dep,Con,Bin)
and a minimal build system B0 ⊂ P , all source packages
in R are compiled throughout multiple iterations, increas-
ing the amount of binary packages B0 · · ·Bn until all source
packages can be compiled and produce all binary packages
B in the repository R. Formally:

Definition 2.20. Given a repository R = (P,Dep,Con,Bin),
and a set of binary package B0 ⊂ P , the bootstrap problem
is defined as a sequence of build profiles such that :

R1 = Pmap1(R)
S1 = Src(R1)
B1 = Bin(Installable(S1, B0))

R2 = Pmap1(R1)
S2 = Src(R1)
B2 = Bin(Installable(S2, B1))

· · ·

Rn = Pmapn(Rn−1)
Sn = Src(Rn)
Bn = Bin(Installable(S,Bn−1)) = B

and for all i, j Ri 6= Rj.

(a) (b)

Figure 2: A source graph 2(b) and build graph 2(a)
example

The function Installable(S,B) computes the sets of pack-
ages Si ⊆ S that are installable in the repository S ∪B.

B0 · · ·Bn are sets of binary packages at each step i can
be used to resolve the dependencies to compile the source
package in Si. The set B0 is the minimal build system. The
last step makes the packages in Bn available which is equal
to the set of binary packages B in R.

Since at each iteration the set Bi grows, less and less
source packages will require to be modified, finally leading
to the original set of source packages S to be compiled. The
result of this compilation will be the original set of binary
packages B.

3. ALGORITHMS
One important application associated with this work is

the development of an automatic build procedure, that will
be used to compile, test and assemble packages for differ-
ent architectures. An essential building block toward this
goal is the development of heuristics and tools to create an
appropriate build order to guide such infrastructure.

To compute such order we first need to arrange packages
in a graph and then transform it using ad-hoc heuristics
to remove all eventual loops. The final result will be then
obtained by topological ordering the vertices in the resulting
graph. In Section 3.3 we will also present two algorithms
used to select a coherent subset of a repository based on a
user specification.

3.1 Build Dependency Graph
In section 3.1 we introduced the source graph to reason

about build dependency cycles. However, for efficiency rea-
sons, in our implementation we use instead an intermediary
data structure that we call the build graph. This data struc-
ture embeds more information than a source graph and can
be easily converted into a source graph. The build graph will
be used as input for the edge removal algorithm in Section
3.2.

Directly using a source graph has the disadvantage of cre-
ating one edge for each binary package in the installation set
(Figure 2(b)) making the edge removal procedure an expen-
sive operation. The build graph obviates this problem by
introducing an intermediary vertex between source vertices.
We call this new vertex kind installation set vertices. We
call edges between a source vertex and an installation set
vertex a build-depends edge, while we call an edge between
an installation set vertex and a source vertex a builds-from
edge. In Figure 2(a) the former is drawn as a dashed line
and the latter as a solid line. Rectangles represent source
package vertices, ellipses represent installation set vertices.

For example, in Figure 2(b), lets suppose S1 build depends
on the binary packages a and c. Besides edges for those two
binary packages, the source graph also contains an edges for
the binary package b. This is because b happens to be in the
installation set of a and is therefor also in the installation
set of S1. It is not obvious from this representation how
the source graph should be modified if either of S1’s two
build dependencies a and c would be dropped. Figure 2(a)
shows the corresponding build graph. S1 now no longer has
an edge for b but instead, b is part of the installation set of
a to which S1 connects. Using this representation, it can
immediately be seen how its connection to S2 and S3 would
be severed if its dependency a was dropped.

Algorithm 1 Build Graph Algorithm

1: procedure build graph(S,B,R)
2: for all s ∈ S do
3: I ← ISR(s)
4: P ←partition(I, s.D)
5: for all is ∈ P do
6: if is * B then
7: add edge(s, is)
8: for all b ∈ is do
9: if b 6∈ B then

10: t← Src(b)
11: add edge(is, t)

Algorithm 1 describes the creation of the build graph. The
function build graph takes as arguments a set of source
packages S, a set of binary packages B and a repository R
such that S,B ⊆ R. The set B holds all the packages that
should not be included in the build graph. First, for each
source package s, we compute an R-installation set I and
we partition it into subsets. The installation set I is usually
small and it is computed using a specialized sat solver [2].
The set P is a set of sets defined as follows

P = {DependencyClosure(p) ∩ I | p ∈ s.D}

and computed by the function Partition. We then add
edges from s to all installation set partitions is. If the in-
stallation set associated to a build dependency is a subset
of B then the subgraph associated to this dependency can
be omitted. In the end, we add edges to all source package
nodes t that build the binary packages b in the installation
set is. The set B contains all those binary packages that are
not relevant to the construction of the build graph because
they are part of the initial minimal build system or have
been cross or natively compiled earlier.

Remark 3.1. The Algorithm 1 is not complete. Since the
installation set computed at each step is not unique there ex-
ist multiple possibilities for a build graph involving the same
initial source packages. By considering edges that correspond
to strong dependencies as in Definition 2.13 we can create a
sub-graph which only consists of nodes which are present in
every possible selection of installation sets.

Source Graph.
The source graph, as defined in Definition 2.17, is com-

puted by path contraction from the build graph over all
builds-from edges. As a result of the contractions, all in-
stallation sets vertices are removed from the graph (Figure

(a)

(b)

Figure 3: Two in-/out-degree based ratio heuristic
examples

2(b)). This operation can be done in O(n + m) with n and
m being the number of vertices and edges in the build graph
respectively.

3.2 Finding Build Profiles
Since the build graph (and thereby the source graph) may

contain dependency loops, in this section we present heuris-
tics to identify a“minimal”set of source packages that, by re-
laxing their dependencies, will make the build graph acyclic.
We start by identifying all cycles of length 2. Removing all
such loops is a pre-requisite to transform the build graph
into a DAG. Then we introduce a simple heuristic based on
local vertex characteristics to automatically identify candi-
date edges to be removed. The last heuristic provides a way
to deal with cycles of arbitrary length. These heuristics are
meant to provide packages maintainers with tools to high-
light important packages and recurrent patterns hidden in
the build graph.

Removing 2-cycles.
Dependency cycles of length two are most often encoun-

tered for source packages of programming languages which
need themselves to be compiled (Vala, Python, SML, Free
Pascal, Common Lisp, Haskell). In a build graph those are
identified by a sequence of one build-depends edge and one
builds-from edge in the opposite direction. They contain ex-
actly one source vertex and one installation set vertex. Since
there is only one way to break a 2-cycle (only build-depends
edges can be removed), we simply enumerate all 2-cycles to
create a list a list of edges that we must deal with to trans-
form the build graph in a DAG. When a cycle cannot be
broken because the dependency is indeed not optional, the
solution is to cross compile the source package or the set of
source packages which generates the binaries in the installa-
tion set. Moreover, we identify all 2-cycle in the core build
graph which is constructed considering only strong depen-
dencies (Definition 2.13). This will provide a lower-bound
to the 2-cycles that must be removed.

Relaxing dependencies using vertex based heuristics.
We provide two metrics to identify source packages or

dependencies that may heavily impact the compilation of
another source package. Removing these “heavy dependen-
cies”, often reduce the number of cycles in the graph. The
basic reasoning behind both heuristics is that often FOSS
software depends on large software packages to borrow a
small number of features. By removing these dependencies,

the package will be successfully compiled with a reduced set
of options without compromising its core functionalities.

Figure 3(a) displays a situation where a heavy dependency
will imply 55 more source packages to be compiled. In this
case, if evolution can be compiled without the binary pack-
age libmx-dev, then its connection to 55 other source pack-
ages is severed and the build graph will be considerably sim-
plified.

Figure 3(b) displays a similar situation where one build
dependency proxies the connection to a heavy source pack-
age that will require a large number of dependencies to be
satisfied. In this case, the source package src:dia only
has one predecessor installation set of dia which in turn
only has one predecessor source package src:tracker. So
if src:tracker can be compiled without dia, then src:dia

can be removed from the graph together with all its connec-
tions to 22 other installation sets.

Another minor heuristic is based on the experience gained
during the years by distribution architects. In particular,
it is common knowledge that functional packages used to
generate documentation or to run unit tests suite are not
essential for the functionality of a package. By identifying
and removing those dependencies, it is possible to further
simplify the build graph.

Cycle based heuristics.

Algorithm 2 Approximate feedback arc set algorithm

1: procedure PartialFAS(Ci, Ai)
2: if Ci = ∅ then
3: return (Ci, Ai)
4: else
5: e←EdgeWithMostCycles(Ci)
6: Ci+1 ← Ci\CyclesThroughEdge(e)
7: Ai+1 ← Ai ∪ {e}
8: return PartialFAS(Ci+1, Ai+1)

9: procedure RecCycle(Gi, Ai, n)
10: if HasCycle(Gi) then
11: C ←FindCycles(Gi, n)
12: if C 6= ∅ then
13: A←PartialFAS(C, ∅, ∅)
14: Gi+1 ←RemoveEdges(Gi, A)
15: Ai+1 ← Ai ∪A
16: return RecCycle(Gi+1, Ai+1, n + 2)
17: else
18: return RecCycle(Gi, Ai, n + 2)

19: else
20: return Ai

21: findFAS ←RecCycle(G, ∅, n)

The two previous heuristics consider local vertex attributes.
Now we present an algorithm to analyse large cycles that will
be otherwise very complicated to see by direct inspection.

We use a modified version of Johnson’s algorithm [10] to
finds all elementary cycles up to a given length. A cycle
is elementary if all vertices appear only once. Johnson’s
algorithm has a complexity O((v + e) ∗ n) where n are the
number of cycles in the graph and, v, e are respectively the
number of vertices and the number of edges. Our algorithm
has a similar complexity, but n is bounded.

We present an approximate solution to the feedback arc
set problem. A minimal feedback arc set is the smallest

(a) (b) (c)

Figure 4: Strongly connected component 4(a), a directed acyclic build graph 4(b), a directed acyclic source
graph and a build order 4(c)

(possibly not unique) set of edges which, when removed from
the graph, makes the graph acyclic. Since the feedback arc
set problem is NP-hard [11] and our graph contains compo-
nents with up to a thousand vertices, it is computationally
not feasible to identify an optimal solution. The proposed
algorithm is based on the consideration that at least one
edge from every cycle in the graph must be part of a feed-
back arc set and that those edges that are common to a
large number of cycles are best candidates to be removed.
The output is a set of build dependencies which, if dropped,
makes the build graph acyclic.

We use a greedy strategy which at first enumerates all
elementary cycles up to a specific length and then iteratively
tries to remove the edges with most cycles through them.
This step is repeated increasing the length of the largest
cycles to consider until the graph is loop free.

Algorithm 2 is composed of two recursive functions and
takes as input a strongly connected subgraph G of the build
graph and an initial cycle length n. It returns a set of
build-depends edges which, if dropped, turn the strongly
connected component into a directed acyclic graph. The
function RecCycles first checks if the input graph is loop
free and in this case it returns the feedback arc set. Oth-
erwise it first computes the list of cycles of length n to be
analysed with the function PartialFAS. The latter greed-
ily removes edges that are part of most cycles until all are
broken.

Once all edges found by this method are removed, we
can then use a standard topological ordering procedure to
extract a build order.

Edge Removal Algorithm.
In Figure 4 we describe the execution of the edge removal

algorithm. Figure 4(a) shows a strongly connected com-
ponent within the build graph. Dashed edges are build-
depends edges and their width represents the amount of cy-
cles through them. Figure 4(b) shows the result of applying
a build profiles set computed by Algorithm 2 to the build
graph where the edges with most cycles through them are
removed. Figure 4(c) shows the associated source graph ob-
tained by path contraction. Numbers represents the build
order obtained by sorting the vertices topologically.

Remark 3.2. In Algorithm 2, the ratio between execu-
tion time and quality of the result can be adjusted setting
the initial maximum length of cycles to enumerate. Our re-
sults show that the gain obtained considering cycle lengths
larger the 10 is small compared to the time needed to com-
pute longer cycles.

3.3 Minimal Build Sets
In this section we present two algorithms that are used

to compute a “reduced” distribution that is self-contained
(Definition 2.8) and large enough to be representative of the
entire distribution, but with less noise. Given an initial set
of source packages, the following two algorithms compute
respectively the maximum amount of source packages which
can be compiled from an initial set of binary packages and
the minimum amount of source packages needed to create a
self contained repository.

Compilation Fix-Point.
We use this algorithm to identify source packages in S

which can be compiled from a given set of binary packages
M (for example the minimal build system). The result of
the algorithm is a tuple (B,C) of binary and source packages
where the set B then can be used in the Algorithm 1 to
exclude packages from the build graph.

Algorithm 3 Compilation Fix Point

1: procedure F(Bi, Ci, Si)
2: NS ← Installable(Si, Bi)
3: if NS = ∅ then
4: return (Bi, Ci)
5: else
6: Bi+1 ← Bin(NS) ∪Bi

7: Ci+1 ← Ci ∪NS
8: Si+1 ← Si \NS
9: return F (Ci+1, Bi+1, Si+1)

10: Fixpoint←F(M, ∅, S)

The Algorithm 3 proceeds as follows: first we compute the
set of all source packages that can be compiled in the given
repository composed by the binary packages in Bi. If such
set is empty then then we return the set of binary packages
and the set of source packages. Otherwise we create three
new sets, Bi+1, Ci+1 and Si+1, respectively the set of binary
packages built so far, the set of source packages compiled so
far and the set of source packages that are left to compile.
We repeat this function until no more source packages can
be compiled.

Build Closure.
The build closure algorithm is used to compute the min-

imum amount of source packages needed to create a self
contained repository as in Definition 2.8.

First we compute the union of all installation sets for all
source packages in S: NB =

⋃
s∈S IS(s). If NB is empty

then it means that either S is empty, or none of the packages
in S are installable. If this is not the case we build three
sets. Bi+1 and Ci+1 respectively hold the set of all binary
packages built so far, and the set of all source packages com-
piled so far. NS is the set of source packages that are left
to be built, that is all source packages that are needed to
build the binary packages in NB minus the source packages
already compiled. The procedure is repeated until all binary
packages can be built from the list of source packages and
all source packages can be built using the binary packages
in the repository.

Algorithm 4 Build Closure

1: procedure F(Bi, Ci, R, S)
2: NB ←

⋃
s∈S IS(s)

3: if NB = ∅ then
4: return (Bi, Ci)
5: else
6: Bi+1 ← Bi ∪NB
7: Ci+1 ← Ci ∪ S
8: NS ← Src(NB) \ Ci+1

9: return F (Bi+1, Ci+1, R,NS)

10: Closure←F(∅, ∅, R, S1)

4. EXPERIMENTAL VALIDATION
We validate our results using the Debian Sid distribution

as of January 2013. To carry out our experiments, instead
of using the entire package repository, we selected a self
contained repository by using the build closure algorithm
presented in Section 4. The algorithm selected 613 source
packages and 2044 binary packages in total. This is a repre-
sentative subset as it contains the base system as well as a
number of browsers, window managers, display toolkits and
several programming languages like Java, Python and Perl.

The build graph created from this repository contains only
two strongly connected components with 977 and 2 vertices.
The larger component contains 36 trivial cycles of length two
and millions of larger cycles. Using the heuristic presented
in the previous sections we were able to remove all cycles by
selecting 58 build dependencies. The total runtime of our
algorithms on a standard desktop machine is less then two
minutes.

In order to validate the effectiveness of our heuristics, we
manually collected and identified a list of optional build de-
pendencies from different sources. We used manually sup-
plied data from package maintainers and automatically har-
vested information from the Gentoo Linux distribution. Us-
ing this data we were able to verify that 88% of the selected
build dependencies can be dropped in practice. Amongst
the 88% of removable build dependencies we identify differ-
ent classes. For example the source package src:curl can be
compiled without openssh-server if a unit test is disabled.
The source package src:gnutls26 can be built without gtk-
doc-tools if one disables documentation generation. Pack-
ages like src:libxslt can drop all their dependencies on
Python if they do not build their python bindings. The
same holds for build dependencies on other languages like
Perl, Ruby or Java. Lastly, some source packages can be
built with some of their features removed. For example the

source package src:nautilus provides a configuration op-
tion to disable a component which removes its dependency
on libtracker-sparql-0.14-dev.

It is important to notice that many of the 36 cycles of
length 2 can not trivially be broken. Some of those cycles are
languages like Python or Vala which need themselves to be
built. To bootstrap them, the build system has to be mod-
ified to first compile a subset of the whole language which
is then used to compile the rest of the language. When, in
some circumstances, a cycle of length two can not be broken
because the associated build dependencies are not optional,
the solution is to cross compile the missing build dependen-
cies.

There is a high correlation between the build dependencies
selected by our heuristics with the build dependencies which
can be dropped in practice. Our cycle based heuristic selects
edges with the most cycles through them. These edges are
usually between the highest connected vertices in the source
graph. A high degree of connectivity is property of big soft-
ware package with lots of dependencies or a software package
depended upon by many (directly or indirectly) . But depen-
dencies on big software packages are mostly optional because
the core dependencies of most source packages are small li-
braries which are easily compilable. Dependencies on big
software packages are to generate documentation, run test
cases, generate language bindings or generate a functional-
ity specific to that other software package. All of those are
usually optional.

If after manual inspection, some of the remaining 12% of
selected build dependencies are found to be essential. This
additional (negative) information can be fed back into our
algorithm to refine our heuristics and produce alternate sug-
gestions to the developer.

Build order.
A topological sorting of the vertices of the source graph

results in a linear ordering. According to this order, a boot-
strap can be done by compiling one source package after the
other. As many source packages in this linear order do not
depend upon each other, they can be compiled in parallel.
The partial sorting algorithm we use exploits this fact by se-
lecting packages that are not connected by a ∼∗ relationship
and marking them for parallel compilation.

The resulting build order consists of 63 groups where all
source packages within each group all can be compiled in
parallel. The amount of source packages which can be com-
piled at each iteration quickly drops since packages compiled
early have the least amount of build dependencies. Source
packages listed last in the build order have the highest build
dependency requirements.

5. EXECUTION PIPELINE
The tools to facilitate build graph analysis and build order

creation are designed after the UNIX philosophy. Each tool
executes one algorithm, the exchange format between the
tools is based on ASCII plain text files and every tool is a
filter. Different tasks are carried out by connecting the tools
together differently. Execution pipelines for the cross and
native bootstrapping phase and to generate self contained
package selections are supplied by shell scripts.

5.1 Toolset

grep-dctrl

coinstall

new architecture

plus architecture:all

sources

bin2src

build_closure

old architecture

plus architecture:all

bin2src

build_fixpoint

available installable compilable to be compiled

src2bin

union

distcheck

user

choice

difference

available

through cross

compilation

Figure 5: Native execution pipeline

The tool grep-dctrl is used for a selection of binary pack-
ages which should be available in the final system. The tools
Coinstall and distcheck are part of dose3. The former
generates a co-installation set while the latter checks in-
stallability of binary packages. The bin2src and src2bin

utilities turn a list of binary packages into the list of source
packages they build from and a list of source packages into
the list of binary packages they build, respectively. The
build_closure and build_fixpoint tools execute the algo-
rithms of the same names, respectively.

5.2 Native Pipeline
Figure 5 shows the pipeline for the native phase. Since

the cross phase cannot yet be analyzed due to missing meta-
data its pipeline is omitted. Solid arrows represent a flow of
binary packages. Dotted arrows represent a flow of source
packages. Dashed arrows represent textual user input. Rect-
angular boxes represent filters. There is only one input to
the filter, which is the arrow connected to the top of the box.
Outgoing arrows from the bottom represent the filtered in-
put. Ingoing arrows to either side are arguments to the filter
and control how the filter behaves depending on the algo-
rithm. Oval shapes represent a set of packages. Boxes with
rounded corners represent set operations.

6. RELATED WORKS
The scope of this paper crosses multiple domains of soft-

ware engineering, from compilers, to dependency visualiza-
tion. To the best of our knowledge this is the first work
trying to analyse the inter-dependencies derived from the
compilation of source packages. We can find in the liter-
ature idea that are similar to what we have used in this

work. In [12], the authors propose the concept of “shared
dependencies”, that is edges that are common among mul-
tiple simple cycles (cycles where each vertex appears only
once). This is indeed similar to our intuition to select edges
in the build graph that are common to multiple cycles. In
this work they propose a new layout algorithm to visualize
dependencies cycles. However, we doubt that approach can
be used in our context where the scale of the problem is at
least one order of magnitude larger.

Research of dependency graphs and how to solve cyclic de-
pendencies between software components has so far mainly
been carried out for C++ and Java classes or limited to the
packaging model of a programming language. PASTA is an
interactive refactoring tool that arranges Java classes into hi-
erarchies. The algorithm used involves the removal of cyclic
dependency using heuristics that are similar to the ones we
present in this paper [8]. Similarly Jooj is an eclipse plug-in
used to detect and avoid cyclic dependencies during devel-
opment using a variant of the feedback arc algorithm [15,
14]. In [3], the authors present a heuristic for automatically
optimizing inter-package connectivity and removing depen-
dency cycles based on simulated annealing. To this end,
their algorithm picks software classes to be moved between
packages.

In the context of compilers and programming languages,
the bootstrapping problem has been well studied. A. Appel
provides an axiomatization of the bootstrap problem in the
context of compilers [4]. In [5], Chambers et all discuss the
pitfalls related to software recompilation. While these works
are related to the idea of building binary components from
source components and dealing with dependency cycles the
scale and focus is different from FOSS distributions making
difficult a direct reuse of their methodologies.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a framework to analyse the

bootstrap problem. We provided a set of heuristics to aid
distribution architects with the daunting task of porting
thousands of software packages to a new architecture in a
semi-automatic way. Our experience on the Debian dis-
tribution, one of the largest FOSS distributions available,
provides a good experimental validation workbench for our
hypothesis.

We have yet to test the algorithms in a real world boot-
strapping setup. The collaboration with the Debian com-
munity has been extremely fruitful but still work has to be
done to develop an automated bootstrapping tool. For the
future we also plan to analyse other FOSS distributions and
to extend our approach to other component repositories.

We also want to evaluate other heuristics for example us-
ing the concept of strong bridges and strong articulation
points in the build graph [9]. Experimental data suggests
that strong bridges exist. Their removal would allow to sig-
nificantly reduce the problem size. This is especially im-
portant during the cross phase because the amount of cross
compiled packages has to be kept as minimal as possible. We
will further investigate if vertex properties like its centrality
or shortest distance to a given vertex cluster can be used as
helpful heuristics to the developer.

Availability.

All tools developed for this work are available as free and
open source software and can be downloaded from the repos-
itory http://gitorious.org/debian-bootstrap/bootstrap.

The results can be validated by running the native.sh

shell script in the root of the project’s source code repository.

Acknowledgements.
The authors are very grateful to many people for interest-

ing discussions: all the members of the Mancoosi team at
University Paris Diderot, Wookey from linaro.org and the
Debian community.

8. REFERENCES
[1] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli.

Strong dependencies between software components. In
International Symposium on Empirical Sofware
Engineering and Measurement, pages 89–99. IEEE,
2009.

[2] P. Abate, R. D. Cosmo, R. Treinen, and S. Zacchiroli.
Dependency solving: A separate concern in
component evolution management. Journal of Systems
and Software, 85(10):2228–2240, 2012.

[3] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui.
Automatic package coupling and cycle minimization.
In Reverse Engineering, 2009. WCRE’09. 16th
Working Conference on, pages 103–112. IEEE, 2009.

[4] A. W. Appel. Axiomatic bootstrapping: A guide for
compiler hackers. ACM Trans. Program. Lang. Syst.,
16(6):1699–1718, 1994.

[5] C. Chambers, J. Dean, and D. Grove. Frameworks for
intra-and interprocedural dataflow analysis. Citeseer,
Washington University, technical report, 1996.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley, 2002.

[7] R. D. Cosmo and S. Zacchiroli. Feature diagrams as
package dependencies. In SPLC, pages 476–480, 2010.

[8] E. Hautus. Improving java software through package
structure analysis. In The 6th IASTED International
Conference Software Engineering and Applications,
2002.

[9] G. F. Italiano, L. Laura, and F. Santaroni. Finding
strong bridges and strong articulation points in linear
time. Theoretical Computer Science, 447(0):74 – 84,
2012. Combinational Algorithms and Applications
(COCOA 2010).

[10] D. B. Johnson. Finding all the elementary circuits of a
directed graph. SIAM Journal on Computing,
4(1):77–84, 1975.

[11] R. M. Karp. Reducibility among combinatorial
problems. 50 Years of Integer Programming
1958-2008, pages 219–241, 2010.

[12] J. Laval, S. Denier, S. Ducasse, et al. Cycles
assessment with cycletable. 2011.

[13] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source package-based
software distributions. In ASE, pages 199–208, 2006.

[14] H. Melton and E. Tempero. An empirical study of
cycles among classes in java. Empirical Software
Engineering, 12(4):389–415, 2007.

[15] H. Melton and E. Tempero. Jooj: Real-time support
for avoiding cyclic dependencies. In G. Dobbie, editor,
Thirtieth Australasian Computer Science Conference
(ACSC2007), volume 62 of CRPIT, pages 87–95,
Ballarat Australia, 2007. ACS.

