
Bootstrapping Software Distributions

Pietro Abate 1 Johannes Schauer 2

1Univ Paris Diderot, PPS,
UMR 7126, Paris, France

2Jacobs University Bremen,
College Ring 3, MB670,

28759 Bremen

CBSE 2013

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 1 / 26



Motivation Problem Description

The Bootstrap Problem

Software distributions are composed of thousands of components,
interconnected by a web of dependency and conflict relations among
binary packages.

FOSS distributions are available for a number of different hardware
architectures with new architectures added every year.

Interdependencies between source packages give rise to millions of
circular dependencies in form of Strongly Connected Components

Porting a distribution to a new architecture means to recompile all
source packages for that new architecture.

The goal of this work is to provide tools and heuristics to remove all
build dependency cycles with a minimal amount of changes and to
deduce a build order

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 2 / 26



Motivation Problem Description

Status Quo

Porting a distribution to a new hardware platform was not an
automatic process.

Build cyclic dependencies had to be found manually without a clear
method (mostly handicraft work).

Removing cyclic build dependencies likely entailed more changes than
necessary.

Poor documentation: the process had to be repeated for every port.

Process took up to a year.

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 3 / 26



Motivation Problem Description

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 4 / 26



Motivation Problem Description

Biggest SCC January 2013

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 5 / 26



Motivation Our Contribution

Our Contribution

Provide a formal framework to reason about build dependencies.

Develop algorithms to untangle the dependency graph and heuristic
to remove build cycles.

Calculate a build order with minimal changes to packages

Test our tools on the Debian software distribution and create a liaison
with the Debian community.

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 6 / 26



Terminology

Binary and Source Packages

Source Packages
I Project source code and metadata
I Build-Depends on binary packages
I Build-Conflicts with binary packages
I Builds binary packages

Binary Packages
I Executables, data files, metadata
I Depends on other binary packages
I Conflicts with other binary packages
I Builds from source packages

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 7 / 26



Terminology

Dependency Graph

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 8 / 26



Terminology

Installation Sets

A set of packages for which for each package
I All dependencies are satisfied
I No conflicting package is part of the set

Due to disjunctive dependencies binary packages can have multiple
installation sets

We do not treat binary packages individually but always together with
an installation set

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 9 / 26



Terminology

Build Graph and Source Graph

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 10 / 26



Terminology

Repositories

A repository is a tuple (P,Dep,Con,Bin) where

P is a set of binary or source packages

Dep is the dependency function (builddep or depends)

Con is the conflict relation toward binary packages

Bin is the binary function mapping source packages to the binary
packages they build

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 11 / 26



Terminology

Build Profiles

A Build profiles is a different configuration for compiling a source
package

It is used to remove dependency cycles by building source packages
with a reduced feature set and therefore less build dependencies

Examples:
I no documentation
I no language bindings
I optional features
I disable unit tests

Record changes in source package metadata

The function Pmap transforms repositories into repositories where
some of the source packages were transformed using Build profiles.

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 12 / 26



Terminology

The Bootstrap Problem

R is the initial repository.

B0 is the minimal build system.

B is the final binary repository.

Src(R) retrieves all source packages from a repository R.

R1 = Pmap1(R)
S1 = Src(R1)
B1 = Bin(Compilable(S1,B0)) ∪ B0

R2 = Pmap2(R1)
S2 = Src(R2)
B2 = Bin(Compilable(S2,B1)) ∪ B0

· · ·
Rn = Pmapn(Rn−1)
Sn = Src(Rn)
Bn = Bin(Compilable(Sn,Bn−1)) = B

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 13 / 26



Terminology

Bootstrap Workflow

1 Select binary packages for minimal build system and cross compile
them for the new platform

2 Build all source packages that can be built without breaking cycles
(fixpoint algorithm in the paper)

3 Create Build Graph and extract SCC
4 If the amount of existing build profiles is not enough to make build

graph acyclic:
I use heuristics to find source packages to add build profiles to
I modify the respective source packages
I go back to 3

5 Feedback Vertex Set algorithm selects source packages to profile build
and a build order is deduced from the now acyclic graph

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 14 / 26



Approach Heuristics

Heuristics

Goal: finding build dependencies to add to a build profile

Heuristics are needed because the investigation can only be done by a
human developer

I Investigation of source code and build system
I Decision about best software engineering practices (cross building vs.

build profile vs. package splitting . . . )
I Decision about trade-off of different kinds of build profiles
I Decision about long-term viability
I Communication with upstream developers

Different heuristic kinds based on dependency graph syntax (mostly
ignoring semantics)

I Simple (degree ratios, degree count)
I Component based (strong brides and articulation points)
I Cycle based
I Feedback Arc Set

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 15 / 26



Approach Heuristics

Simple Heuristics

Ratio based heuristics

Amount of missing dependencies

Amount of missing “weak” dependencies (build dependencies
commonly used for documentation generation and unit tests)

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 16 / 26



Approach Heuristics

Strong bridges and strong articulation points

1

2

3

4

6

7

5

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 17 / 26



Approach Heuristics

Small cycles and edges with most cycles through them

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 18 / 26



Approach Feedback Arc Set Algorithm

Feedback Arc Set Algorithm

1 Remove all self-cycles and add them to the FAS

2 Find cycles up to length N

3 Remove edge with most cycles through them and add it to the FAS

4 If cycles remain, go back to 3, otherwise continue

5 If graph is still cyclic, increment N and go back to 2

6 Return obtained FAS

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 19 / 26



Experimental Results

Toolset

Freely Available (LGPL3+).

UNIX Philosophy: Multiple application, each executing one algorithm
connected by pipes

Exchange format is a plain text Debian package description format

Graphs are output in GraphML to be consumed and analyzed by 3rd
party tools

Existing tools are used where possible

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 20 / 26



Experimental Results

Test Setup

Debian Sid, January 2013
I more than 38000 binary packages
I more than 18000 source packages

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 21 / 26



Experimental Results

Benchmark Results

~62 seconds

~131 seconds
~6 minutes

utilities

build-closure

build-fixpoint

create-graph

create-buildorder

Figure : Execution time using a self-contained repository (top), normal execution
(middle) and with computing strong dependencies (bottom)

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 22 / 26



Experimental Results

Quality of Feedback Arc Set Algorithm

Information of droppability manually gathered and extracted from
Gentoo Linux

Biggest strongly connected component with 993 vertices and 9420
edges

cycle length modified sources FAS size removable

4 53 95 0.91 %
6 54 99 0.93 %
8 57 96 0.91 %

10 57 99 0.92 %
12 53 93 0.91 %

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 23 / 26



Summary

Conclusions and Future Work

Bootstrapping FOSS distributions used to be a year long manual
process and it can now be automatic, deterministic and fast

This paper lies the theoretical foundations and the analysis is only
based on the packages metadata. These tools are going to be used
this summer to effectively bootstrap the Debian distribution to a new
hardware platform.

Improve our heuristics

Add more algorithms

Extend the support of the tool set to other software distributions.

Possible use in a different context?

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 24 / 26



Summary

Questions?

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 25 / 26



Summary

Comparison with other FAS algorithms

moverevfas
movefas
siftrevfas

siftfas
insertrevfas

insertfas
eadesfas

cyclemove
cyclesift

cycleinsert
cyclefas

0.0 0.2 0.4 0.6 0.8

Solution quality (smaller is better)

cyclemove
cyclesift

cycleinsert
cyclefas

moverevfas
movefas
siftrevfas

siftfas
insertrevfas

insertfas
eadesfas

0 1 2 3 4 5

Required runtime (smaller is better)

P. Abate, J. Schauer (Diderot, Jacobs) Bootstrapping Software Distributions CBSE 2013 26 / 26


	Motivation
	Problem Description
	Our Contribution

	Terminology
	Approach
	Heuristics
	Feedback Arc Set Algorithm

	Experimental Results
	Summary

