
Solving the bootstrap problem for Debian based
operating systems

Johannes ’josch’ Schauer

Jacobs University Bremen

DebConf 2013, Vaumarcus

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 1 / 32



Introduction

Overview

botch = Bootstrap/Build Ordering ToolCHain

Started as Debian Google Summer of Code project 2012

Continued as my master thesis at Jacobs University Bremen

Mentors:
I Wookey practical side
I Pietro Abate theoretical/academic side

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 2 / 32



Introduction Problem Description

Common Case

Source packages are always natively compiled

Source packages are compiled with the full archive of binary packages
available

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 3 / 32



Introduction Problem Description

During Bootstrapping

Some source packages must be cross compiled

Only a few binary packages are available → dependency cycles

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 4 / 32



Introduction Problem Description

Dependency Graph in Debian Sid

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 5 / 32



Introduction Problem Description

Development of problem size

●●●●●●●●●●●●●
●●●●●

●●
●●●●●

●

●●●●
●●●●

●●●●●
●

●●●●●
●●●●

●
●●●●●

●●●●●
●●●●●●●●●●●

●●●●

●

●●●●●●●●●●●●●●●●
●●●●

●●●
●●●●●●● ●●●●

●●

●
●●●
●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●
●

●●

●●●●●●●●●●●●●

●●●●

●●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●

●●●●●●●●
●●●●

●
●●●

●●●●●●●●●

●●●

●●●●●

●
●●●●
●●●●●●●

●●●●●
●●●●●

●●
●
●
●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

2006 2008 2010 2012

0
20

0
40

0
60

0
80

0
10

00

Date

N
um

be
r 

of
 v

er
tic

es
 in

 b
ig

ge
st

 S
C

C

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 6 / 32



Introduction Problem Description

Current Bootstrapping Practice

Using Gentoo or OpenEmbedded to avoid cross compilation of the
base system

Manual dependency cycle analysis

Manual hacking of source packages to build with fewer build
dependencies

Takes several months up to a year to complete

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 7 / 32



Introduction Benefits to Debian

What if bootstrapping was easier?

Easier porting for upcoming architectures

More custom ports, optimized for a specific CPU

Remove the need of Gentoo or OpenEmbedded (make Debian more
universal)

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 8 / 32



Introduction Benefits to Debian

Wait, there is more!

Update lagging architectures

Build for targets that can’t build themselves (once cross building
gained better support)

QA tool which allows to check the archive for bootstrappability

Order rebuilds for library transitions (Haskell, OCaml)

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 9 / 32



Introduction What this talk is about

The essence of this talk

The core algorithms for graph analysis exist and they are fast and
seem to be correct

We need decisions about new dependency syntaxes, multiarch and
cross building to do the practical plumbing

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 10 / 32



Introduction What this talk is about

The tools

Written in OCaml, Python, Shell

LGPL3+

Using dose3 as helper library (parser, solver, ...)

UNIX Philosophy: Multiple application, each executing one algorithm
connected by pipes

Exchange format is a plain text Debian package description format

Graphs are output in GraphML to be consumed and analyzed by 3rd
party tools

Git: https://gitorious.org/debian-bootstrap/botch

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 11 / 32

https://gitorious.org/debian-bootstrap/botch


Introduction What this talk is about

More specifically we can now...

... create & analyze a dependency graph

... find source packages to modify

... create a build order

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 12 / 32



Introduction What this talk is about

It’s only theory

Tools only work on package meta data

No source packages are compiled, no binary packages installed

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 13 / 32



Introduction What this talk is about

What is needed to test in practice

Reduced build dependencies (build profiles)

Cross compilation support in base packages

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 14 / 32



Introduction What this talk is about

Bootstrap Workflow

1 Select binary packages for minimal build system and cross compile
them for the new platform

2 Create Build Graph and extract strongly connected components
3 If the amount of existing build profiles is not enough to make build

graph acyclic:
I use heuristics to find source packages to add build profiles to
I modify the respective source packages
I go back to 2

4 Feedback Vertex Set algorithm selects source packages to profile build
and a build order is deduced from the now acyclic graph

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 15 / 32



Introduction What this talk is about

Breaking dependency cycles

Remove build dependencies (build profiles)

Move dependencies from Build-Depends to Build-Depends-Indep

Choose different installation sets for not-strong dependencies

Make binary packages available through cross compilation

Use existing Multi-Arch:foreign packages

Split a source package

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 16 / 32



Introduction What this talk is about

Heuristics

Goal: finding source packages to modify

Heuristics are needed because the investigation can only be done by a
human developer

Different heuristic kinds based on dependency graph syntax (mostly
ignoring semantics)

I Simple (degree ratios, degree count)
I Component based (strong brides and articulation points)
I Cycle based
I Feedback Arc Set

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 17 / 32



Introduction What this talk is about

HTML Display of Heuristics

http://mister-muffin.de/bootstrap/stats/

Figure : Table of edges with most cycles through them

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 18 / 32

http://mister-muffin.de/bootstrap/stats/


Introduction What this talk is about

Simple Heuristics

Ratio based heuristics

Amount of missing dependencies

Amount of missing “weak” dependencies (build dependencies
commonly used for documentation generation and unit tests)

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 19 / 32



Introduction What this talk is about

Strong bridges

1

2

3

4

6

7

5

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 20 / 32



Introduction What this talk is about

Strong bridges

SCC#2

SCC#1

2

1 3 4
6

7 5

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 21 / 32



Introduction What this talk is about

Strong articulation points

1

2

3

4

6

7

5

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 22 / 32



Introduction What this talk is about

Strong articulation points

SCC#1

SCC#2

SCC#3

1
2

3

4

6 7

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 23 / 32



Introduction What this talk is about

Small cycles

libusb-1.0-0-dev

src:udev

src:libusbx

usbutils

libudev-dev

src:usbutils

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 24 / 32



Introduction What this talk is about

HTML Display of Self-Cycles
http://mister-muffin.de/bootstrap/selfcycles.html

Figure : Table of indirect self-cyclesJ. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 25 / 32

http://mister-muffin.de/bootstrap/selfcycles.html


Introduction What this talk is about

Edges with most cycles through them
SCC with 15 vertices, 31 edges

libxt-dev

src:libxcb

src:libxt

src:libx11

python-xcbgen

python

libx11-dev

libxcb1-dev

src:python2.7

xauth

src:libxmu

libxext-dev src:libxext

src:xauth

libxmuu-dev

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 26 / 32



Introduction What this talk is about

Edges with most cycles through them
SCC with 15 vertices, 31 edges

libxt-dev

src:libxcb

src:libxt

src:libx11

python-xcbgen

python

libx11-dev

libxcb1-dev

src:python2.7

xauth

src:libxmu

libxext-dev src:libxext

src:xauth

libxmuu-dev

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 27 / 32



Introduction What this talk is about

Calculating a Feedback Arc Set

biggest SCC: 1080 vertices, 11726 edges

assuming everything can be broken
I breakable by modifying 51 source packages

more realistic using Gentoo and lists by Thorsten Glaser, Patrick
McDermott, Daniel Schepler, Wookey

I breakable by modifying 57 source packages

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 28 / 32



Introduction What this talk is about

Benchmark Results

~62 seconds

~131 seconds
~6 minutes

utilities

build-closure

build-fixpoint

create-graph

create-buildorder

Figure : Execution time using a self-contained repository (top), normal execution
(middle) and with computing strong dependencies (bottom)

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 29 / 32



Introduction What this talk is about

Resources

Blog: http://blog.mister-muffin.de

ML: debian-bootstrap [at] lists.mister-muffin.de

IRC: #debian-bootstrap [at] irc.oftc.net

Git1: https://gitorious.org/debian-bootstrap/botch

Git2: https://gitorious.org/debian-bootstrap/gen2deb

Git3: https://github.com/josch/cycle_test

Dose3: https://gforge.inria.fr/projects/dose/

Wiki1: http://wiki.debian.org/DebianBootstrap

Wiki2: http://wiki.debian.org/DebianBootstrap/TODO

Wiki3: https://gitorious.org/debian-bootstrap/pages/Home

Thesis: http://mister-muffin.de/bootstrap/thesis.pdf

Profiles: https://l.d.o/debian-devel/2013/01/msg00329.html

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 30 / 32

http://blog.mister-muffin.de
https://gitorious.org/debian-bootstrap/botch
https://gitorious.org/debian-bootstrap/gen2deb
https://github.com/josch/cycle_test
https://gforge.inria.fr/projects/dose/
http://wiki.debian.org/DebianBootstrap
http://wiki.debian.org/DebianBootstrap/TODO
https://gitorious.org/debian-bootstrap/pages/Home
http://mister-muffin.de/bootstrap/thesis.pdf
https://l.d.o/debian-devel/2013/01/msg00329.html


Introduction What this talk is about

Conclusion

We could have:
I Easier porting
I More custom ports
I Remove the need of Gentoo or OpenEmbedded
I Update lagging architectures
I Build for targets that can’t build themselves
I QA tool checking for bootstrappability

But we are missing:
I Decision on the build profile format
I Several fixes to support cross compilation

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 31 / 32



Introduction What this talk is about

Questions

Questions?

J. Schauer (JUB) An introduction to the Bootstrap/Build Ordering ToolchainDebConf 2013, Vaumarcus 32 / 32


	Introduction
	Problem Description
	Benefits to Debian
	What this talk is about


