
Flowy 2.0

fast execution of stream based IP flow queries

Johannes Schauer
Jacobs University Bremen

j.schauer@jacobs-university.de

ABSTRACT
Network traffic analysis using flow records is used for gath-
ering statistics, usage patterns, billing, network planning or
intrusion and attack detection. Unfortunately current flow
analysis tools suffer from poor query syntax and limited
functionality for more complex analysis tasks. This project
proposes the traffic analysis tool called Flowy which solves
mentioned issues by using a powerful query language that
goes beyond simple filtering of packets by some of their at-
tributes. This bachelor thesis presents a fast C based imple-
mentation of the core of the former Python implementation
of Flowy.

1. INTRODUCTION
With the growth of networks and their generated traffic
there is an ever increasing need of network owners for better
tools allowing to analyze the huge amounts of data trans-
fered therein. Unfortunately bandwidths of network hard-
ware seem to grow faster than space of permanent storage
solutions which makes it unfeasible to capture all transfered
traffic. Even only capturing the headers of forwarded pack-
ets without their payload would generate enormous amounts
of data. The NetFlow format which was developed by Cisco
Systems [6] allows for more efficient recording of transfered
data by organizing traffic meta data into flow records. Each
flow record is identified by a seven tuple of the following
items:

• soure IP address

• source port number

• destination IP address

• destination port number

• IP protocol

• input Interface

• IP type of service

A flow record stores information like overall amount of data
and number of packets transfered, start and end timestamps
or TCP flags. Aggregation of the data from several packets
that represent a single flow in such a way greatly reduces
the amount of storage required but still allows for a sufficient
amount of analysis of the generated traffic. The most widely
used formats of NetFlow are v5 and v9 where v5 structures
flow information in a fixed packet format, while v9 allows
for an extensible format defined by templates. The IETF
proposes the IPFIX format [7] as a standardized flow record
format based on NetFlow v9. Devices that can collect traffic
data, like routers and switches, will export the summaries
of seen flows via NetFlow/IPFIX to a collector, which could
either perform a real-time analysis or store those flow records
for later use.

Current most popular analysis software like nfdump [10] and
flow-tools [9] for identifying, filtering and aggregating flows
only allow for very basic inspection of the gathered packets.
They allow to filter flows by selecting only those flows that
match a single or a set of attributes like source IP, port num-
ber or number of packets, but they are unable to select flows
based on relative comparisons between flows. This missing
functionality in existing software does not make it fit for
a range of analysis tasks. Such tasks include situations in
which someone wants to detect portsscans where ports on a
host are scanned in incremental fashion. Another use case
is the detection of a specific kind of network traffic (like
one produced by malware) that can only be accomplished
by comparing multiple flows and filter them relative to each
other. Or one might simply just want to filter for bidirec-
tional connections where two flows with matching source
and destination IP addresses and port numbers belong to-
gether. Using existing tools this kind of queries are hard to
implement as they do not allow for relative comparisons of
different flows but only apply absolute matching to a stream
of flows.

Flowy improves on existing analysis tools by using a uniform
easy to write syntax for it’s filtering language and offers more
powerful features in detecting traffic with given properties
and complex relations among a given set of flows. While
the first implementation in Python [11] was meant as a pro-
totype for the developed query language [12] and focused
on completeness and correctness it suffers from a number of
performance issues that will be discussed further.

1

In the following chapter this document will shortly give a
description of the two most popular flow analysis software
nfdump and flow-tools. Section 3 will contain an overview of
the query language used by Flowy. In section 4 will handle
the former Python implementation of Flowy and its draw-
backs while the section after that will in detail describe how
those are addressed in the Flowy rewrite. Section 6 will then
show how the changes improved the performance of Flowy
by showing some benchmark results while the second to last
section gives an outlook on future work that can or should
be done on the topic.

2. EXISTING TOOLS FOR FLOW ANALY-
SIS

This section will give an overview over two very popular
software pieces for analysis of NetFlow data.

2.1 flow-tools
flow-tools [9] is a very popular suite of 24 applications that
work together by connecting them via pipes. The most im-
portant utilities are:

• flow-capture for capturing NetFlow data exported by
a network device and storing it on the local disk in the
flow-tools format

• flow-cat which reads collected flow records and passes
them on to a next tool via stdout

• flow-filter to filter flows by simple absolute filtering
rules

• flow-report to create summaries and aggregate and
sort the flows passed to it.

Other tools it provides are flow-export to convert captured
flows into MySQL, PostgreSQL or CSV and flow-print to
produce human readable output. A usual analysis will con-
catenate captured datafiles together using flow-cat, pass
them into flow-filter that filters by a filter file given to
it and print the result using flow-report. The flow-tools
suite excel in their ease of use and simplicity of concate-
nating different commands but it suffers from the relatively
simple filter rules and overhead created by using pipes to
chain different commands together.

2.2 nfdump
Also being very popular, nfdump [10] works similar to flow-
tools but uses a different storage format and a smaller num-
ber of separate application but is also working by piping
them together. NetFlow data is captured using nfcapd and
then processed by nfdump which can filter as well as dis-
play the sorted and filtered result. nfdump’s filter format
is similar to the tcpdump filter syntax. It suffers from its
limited possibilities to aggregate the results and from the fil-
tering options being given as command line options as well
as a filter file. The power of its filtering rules is similar to
that of flow-tools and as such is mostly limited to absolute
comparisons of flow attributes.

3. QUERY LANGUAGE
Flow records are processed in a stream oriented approach.
The query language [12] allows to assemble such streams
and connect them together by pipes as shown in figure 1.
A stream consists of filter, grouper, groupfilter, merger and
ungrouper components which are described in a query file.
The naming of filtering primitives of the query language is
closely linked to flow record attributes listed in RFC 5102
[13].

3.1 Processing Pipeline
The splitter is the most simple stage as it only reads flows
from an input trace file and distributes them into the defined
branches.

A filter does absolute filtering by only passing along those
records that match a given rule. All other records are dropped.
Filtering supports ranges and is also able to compare differ-
ent fields of flow records with each other but it cannot do
relative filtering and compare values to other flow records.

In the grouper stage flow records are grouped together by ab-
solute or relative comparisons. That means that in this stage
records can be compared with each other. Each grouper may
contain several modules which are subgroups. Group mem-
bership is achieved by a record matching at least one of a
group’s subgroups. A record may belong to several sub-
groups but only belongs to one group. A group can also
be associated with aggregated data of the subgroups which
might be of use at a later stage. The grouper will create
group records and pass those on to the next stage.

The groupfilter filters out groups based on absolute rules
over a group’s normal or aggregated attributes. It does not
compare values between different group records and drops
group records not matching the filtering rules.

The merger takes several streams of input group records
and based on merging rules merges them into N-tuples of
group records where N is the number of input streams. The
merger does relative comparison between group attributes
and is also able to make timing- and concurrency-based de-
cisions using Allen’s time interval algebra [1]. The merger
can contain several modules and to form a group tuple, N
groups have to meet the requirements of the first module
but not the others.

In the ungrouper stage, the received group record tuples
are expanded into separate streams of flow records that are
output in the order of their timestamps. Each output stream
is one result of the specified query and does not contain any
duplicate flow records.

3.2 Sample flow query file
Figure 2 shows an example of an flow query file. The splitter
does not take any options and is therefore always specified
in the way shown in the example above. It is followed by two
filter definitions which belong to branches A and B, respec-
tively. The filter in branch A handles the HTTP requests by
filtering for the destination port 80 of a flow record while the
filter of branch B takes care of HTTP responses by filtering
for the source port. The grouper at each branch will group
flow records that share the same source and destination IP

2

filter grouper group-filter

splitter
merger un-grouper

input

branch 1

branch 2

branch N

grouper

grouper group-filter

group-filterfilter

filter

output

output

output

flow records group records group record

N-tuples

flow records

Figure 1: Flowy processing pipeline from [12]

addresses, and also do not have a start time that exceeds the
end time of the previous flow record by more than one sec-
ond. The aggregation mechanism will attach meta-data in-
formation to each group. In the query example from Figure
2, the meta-data will consist of the following information:
the source and destination ip, the sum of all bytes the mem-
ber flow records in that group have, the number of contained
flow records, a bitwise OR of the flow records’ TCP flags as
well as source and destination ports for branches A and B
respectively. The group filter takes the formed groups and
checks if the groups’ TCP flags contain the SYN, ACK and
FIN flags as a simple heuristic for them forming a complete
TCP stream. The two branches are merged by the merger
M, which puts group records into tuples according to the
following rule: the soure IP address and port number of the
request branch A match the destination IP address and port
number of the response branch B. Since the request is ex-
pected to be smaller than the response there is one rule that
compares the overall amount of bytes in both group records.
The last requirement comes from Allen’s time interval al-
gebra and states that the response should arrive after or
during the request. The ungrouper in the end will expand
the tuples of group records into individual streams of flow
records.

The last few lines assemble the whole pipeline with its two
branches. Data is read from “./netflow-trace.h5” and put
into the splitter. The splitter then distributes flow records
into the two branches A and B where they are filtered,
grouped, groupfiltered and merged in the end. The merger
then passes the group record tuples into the ungrouper,
which outputs the flow records into “./ungrouped.h5”.

4. FORMER PYTHON IMPLEMENTATION
On program execution the flow query file is parsed using the
Python PLY [3] module that provides a lexer and parser.
After successful execution an instance of that parser class
is then passed to all stages of the pipeline that is to be ex-
ecuted. Each of the stages (splitter, filter, grouper, group-
filter, merger, ungrouper) is implemented as Python class.

Each of these classes consists of a validator and an execu-
tion module. The module that is executed by the main script
flowy.py is the validator class that checks the result of the
parser for integrity and only then executes the execution
module. Each part of the pipeline in addition to the parser
instance is also given an instance of the previous pipeline
step. Every created branch is handled by a separate thread.
Since the grouper passes on group records instead of flow
records it will save the flow records it receives into a tem-
porary storage and tag them with the group and subgroup
they belong to. The grouped flow records are later on re-
trieved by the ungrouper. As the splitter’s only task is to
distribute flow records to the filters, the actual implemen-
tation applies the filters first and only then lets the splitter
distribute the data into each branch that matches the fil-
ter rules. This interchange avoids a repetitive execution of
similar filtering rules at each of the branches and also avoids
needless copying of flow records from one branch to the next.

4.1 Python Implementation Performance Is-
sues

One of the biggest inhibitors to performance is Python [14],
the language Flowy was implemented in. Performance is
wasted by the interpreted and weakly typed nature of Python
as well as aspects like: repeatedly creating and destroy-
ing dictionaries and lists, looking up and changing items
in them, passing them around, repeatedly calling functions,
non-local variable lookup, usage of immutable objects, us-
ing range instead of xrange and much more, which would
go beyond the scope of this section. Most of these problems
can simply be solved by not using Python for them but to
implement them in C.

Another big overhead is created using PyTables [2] as it
adds complexity where simplicity is needed and also requires
a prior conversion of the input data which adds additional
hassle.

Profiling cases reveal that the bottlenecks are mainly con-

3

1 s p l i t t e r S {}
2
3 f i l t e r www req {
4 dstport = 80
5 }
6
7 f i l t e r www res {
8 s r cpo r t = 80
9 }

10
11 grouper g www req {
12 module g1 {
13 s r c i p = s r c i p
14 d s t i p = dst i p
15 et ime < st ime de l t a 1 s
16 }
17 aggregate s r c i p , dst ip , sum(byte s) as

bytes , count (r e c i d) as n ,
18 bitOR(t c p f l a g s) as f l a g s , union (

s r cpo r t) as s r cp o r t s
19 }
20
21 grouper g www res {
22 module g1 {
23 s r c i p = s r c i p d s t i p = dst i p et ime

< st ime de l t a 1 s } aggregate
24 s r c i p , dst ip , sum(byte s) as bytes , count (r e c i d)

as n , bitOR(t c p f l a g s) as
25 f l a g s , union (dstport) as d s tpo r t s }
26
27 g r o u p f i l t e r gg f {
28 bitAND(f l a g s , 0x13) = 0x13
29 }
30
31 merger M {
32 module m1 {
33 branches B, A
34 A. s r c i p = B. d s t i p
35 A. s r cp o r t s = B. d s tpo r t s
36 A. byte s < B. byte s
37 B o i A OR B d A
38 }
39 export m1
40 }
41
42 ungrouper U {}
43
44 ”. / netf low−t r a c e . h5 ” −> S
45 S branch A −> www req −> g www req −> ggf −> M
46 S branch B −> www res −> g www res −> ggf −> M
47 M−>U−>”./ungrouped . h5 ”

Figure 2: sample flow query file matching HTTP
downloads from [11]

centrated in the filter, grouper and merger. Specifically they
lie in the repeatedly called functions (creating function call-
ing overhead) and either contain larger loops where a dictio-
nary is queried or filled or where objects are passed around
using deepcopy(). Testing showed that avoiding deepcopy()
in different code sections didnt change execution at all and
was just a waste of memory operations.

An obvious pitfall concerns the handling of flow and group
records. In the current implementation a flow or group
record traverses a branch by having its full data always
copied, even though that data never changes. Passing a ref-
erence to the original flow or group record inside the branch
would suffice. Even worse, complete flow records are copied
into a temporary storage by the grouper which, in turn, in-
creases the number of memory operations and the amount
of memory used.

5. IMPROVEMENTS MADE TO FLOWY
During the course of the thesis work several improvements
to the Python implementation of Flowy have been done.
The following section describes those improvements as well
as the implementation of the Flowy core algorithm in plain
C.

5.1 Parts kept in their original state
While most of the code had to change to allow for any im-
provements, it was decided that the PLY based flow query
parser and the validators of the flow query will stay the way
they were. This is justified by the fact that the execution
time those code parts take is negligible compared to the main
execution and is also not dependent on the amount of input
records and only slightly depends on the complexity of the
input query. In those parts Python plays off its strengths of
achieving much with less code in a readable manner while
not slowing the overall processing down as there is no com-
plex computations involved, compared to the core algorithm.

5.2 Early improvements
Several small changes have already been implemented in the
process of Flowy’s code investigation.

Some changes which already had small impacts on perfor-
mance were for example changing the affinity mask of each of
the created threads, so that each of them runs on a separate
processor core (if available) instead of all threads running
on the single core assigned to the parent process. Another
modification concerned a removal of a try/except block that
enclosed nearly the whole code which was unnecessary, since
the except block was only to check for parsing errors of the
flow query file.

Functional improvements include the addition of a small test
suite. It already contains some sample flow query files and
input traces that are given to Flowy by a script that also
checks whether the md5sum of Flowy’s output matches the
expected hash. The suite will be used later when changing
big parts of the code to verify that the result is still the
same and to detect regressions. A setup.py file was writ-
ten to facilitate easy installation of Flowy or make it easier
for possible packaging for distributions. Since the configura-
tion file options.py did not contain anything that made that

4

1 cde f exte rn from ” in c l ude/ f t r e ad e r . h ”:
2 s t r u c t f t d a t a :
3 i n t fd
4 f t i o i o
5 f t s 3 r e c o f f s e t s o f f s e t s
6 f t v e r v e r s i on
7 u in t64 x f i e l d
8 in t r e c s i z e
9 char ∗∗ r e c o rd s

10 in t numrecords
11 f t d a t a ∗ f t op en (char ∗ f i l ename)
12
13 cde f c l a s s FtReader :
14 cde f f t da t a ∗data
15
16 de f i n i t (s e l f , f i l ename) :
17 s e l f . data = f t open (f i l ename)
18
19 de f get numrecords (s e l f) :
20 re turn s e l f . data . numrecords

Figure 3: A Cython snippet from ftreader.pyx

file worth to exist as a Python script it was converted into
flowy.conf using the usual key/value pair config file format
that should be easier for users to edit. Command line option
were not working in the original Flowy version so the parser
was first switched from the deprecated optparse module to
argparse and for every config option an argument was added
that would override that configuration value. Additionally
a profiling switch was added so that profiling could be done
without changes in the source. Also, in order to improve
batch processing the flow query format was extended to also
accept “-” as a filename in which case the file’s content was
either given by a filename as a command line argument or
using stdin.

The profiling output is now not given in the old format
using brackets to separate values but using tabs as delim-
iters so that the result of a profiling run can be more easily
parsed or displayed by other tools. Additionally, flowy.py
and flow exec.py as well as ft2hdf.py, print hdf in step.py
and printhdf.py were merged into one source file each. Fi-
nally ambiguous variable names that are otherwise used as
Python built-ins like filter, file, hash, id and map were re-
named into more meaningful names.

5.3 Cython
Cython [4] is a language that was written to make the devel-
opment of C extensions for Python easier. Originally, writ-
ing a native extension or library that Python code could in-
terface with was a very verbose process. The encapsulation
of methods and objects in datatypes defined in python.h, re-
quired repeated usage of very similar code patterns for each
interface. Cython allows to automate that process and even
more so, develop a C extension in Python syntax.

At the most basic level, Cython code has the exact same syn-
tax as Python and is even py3k compatible. There exist only
some additional foreign constructs to allow for declaration
of static types or tighter loops. There exist only few Python
constructs like lambda statements, nested functions and gen-
erators (all requiring closures) that are not yet available in
mainline Cython but are being developed on in the cython-
closures branch [5]. Cython will translate its Python-like
code into a normal C source file that can be compiled us-

ing gcc. Therefore, Cython is not only a language that is
mostly compatible to Python syntax, but also a source code
compiler. The C file that was generated from Cython code
will be in a readable format containing comments that indi-
cate what line of the Cython code was translated into what
piece of C code. Naively compiling normal Python code
with Cython will not cause any speed improvements yet,
as the compiled code will still use Python objects in their
dynamically-typed way, and hence will still suffer from their
additional computation overhead.

A significant performance improvement can be achieved by
making use of enhancing Cython specific syntax elements.
These syntax elements allows to assign types to variables,
call functions from C libraries by including a C header or use
C constructs like structs and pointers. When Cython com-
piles a Cython source file into C, sections containing those
native C constructs will mostly be translated one-to-one into
corresponding C code without making use of Python objects
and thus avoid the connected overhead. Figure 3 shows a
snippet from Flowy’s Cython code, depicting the Python-
like syntax and class definitions combined with static types
from C, the inclusion of a C header and calling of C library
functions.

In the case of Flowy, Cython was used to bridge between
C libraries that were written and the surrounding Python
code. In particular, a library was written that would pro-
vide a “pythonic”, object oriented interface to C libraries.
Those libraries provide support for parsing flow-tools traces,
retrieving records or certain attributes and writing out flow-
tools compatible records. With this Cython module, wrap-
ping a flow record storage library written in C, it is possible
to retrieve flow records by an id. Hence, during processing,
only the id has to be passed around instead of the full flow
record.

5.4 Data Format
The original Flowy implementation [11] uses PyTables to
store and process flow records. PyTables is a library written
to manage huge amounts of hierachically structured data.
It does so by using HDF [8] as the storage format for which
it provides various indexes for fast data retrieval. PyTables
is a feature-rich and well-supported library but its complex-
ity is unsuited for usage in Flowy. The advantages of using
PyTables for data management come from its ease of use
for storage and retrieval of data in an efficient manner. The
downside is that existing data which will mostly exist in ei-
ther the nfdump or flow-tools format has to be converted
in to the HDF file format prior to execution of Flowy re-
sulting in additional overhead. Another downside is that
PyTables exhibits a “more-than-needed” complexity. That
is, a replacement of a general purpose data storage solution
like PyTables with a more specific custom solution, adjusted
for Flowy, will certainly lead to performance improvements,
since one can optimize a for the special usage patterns of
Flowy. In addition a custom solution could be implemented
in a way that nfdump or flow-tools data can be accessed di-
rectly without conversion to a data format specific to Flowy
which removes the overhead of a needed conversion and also
does not add yet another proprietary data storage format
the user has to handle.

5

In contrast to flow-tools and nfdump, Flowy in most cases
does not access data in a linear fashion. This is because
flow-tools and nfdump only apply absolute filtering to each
flow record they are fed while Flowy needs each flow record
to be randomly accessibly to do relative filtering.

To address those issues a C library was written that imple-
mented random access to records in flow-tools traces. The
functionality is currently limited to flow-tools only as flow-
tools provide an easy to use library to access flow-tools data
from third party programs whereas no such thing exists for
nfdump. But support for more flow trace formats can be
included afterward. As the flow-tools library only allows for
sequential access to records of a trace, the custom library
that was written sequentially reads flow records into memory
where they are then randomly accessible. Like in flow-tools,
storage is done via char arrays. This avoids having to man-
age the 20 different kinds of NetFlow formats supported by
flow-tools and also avoids wasting memory by putting record
fields into a structure allowing for storage of all 33 possible
fields. To access data from that array the offset of each field
is stored into another struct. Since the length of each field
is static it is globally stored as #includes. Each record is
identified by an id. The id is simply their index in the array
of records. This allows for retrieval of records in O(1) time.
The library allows for retrieval of a full records or certain
attributes only. The latter functionality is heavily used by
the comparisons in Flowy’s filtering stages.

As a result of the replacement of PyTables with the new
parser, big parts of the code where not needed anymore and
other parts had to be heavily rewritten.

5.5 Rewrite of Core Algorithms in C
During the removal of PyTables from the Python code it
became apparent that, to significantly speedup Flowy’s ex-
ecution time, it would not be enough to replace each stage
of the filtering pipeline with Cython or C by itself but the
whole core of Flowy’s record filtering had to be rewritten.
Tackling the parts by itself would’ve introduced unnecessary
complexity in handing over data structures from one stage
to the next as well as unnecessary performance loss during
these phases. Implementing the whole processing pipeline in
C was the best way to assure that the process gets optimized
as much as possible.

The rewrite that was done has certain limitations but is al-
ready powerful enough to process a query as displayed in
figure 2. Queries are not yet possible to be read from a flow
query file but are done by filling structs with content that
are currently hardcoded. Nevertheless they are only hard-
coded in the sense that their content can also be programat-
ically be modified. Once this is implemented in the Python
Flowy implementation, the Flowy Python wrapper would
(after parsing validating the flow query file) create a Cython
class with proper arguments which would in turn supply the
core C implementation with properly filled structs.

An example for those structs can bee seen in figure 4 and
5 which represent branch A and the merger of the query
shown in figure 2. As already explained above, this part is
still hardcoded but as one can also see, it is easy to create
those struct arrays on runtime to resemble any other query

1 s t r u c t a b s o l u t e f i l t e r r u l e f i l t e r r u l e s b r a n c hA
[2] = {

2 { data−>o f f s e t s . dstport , LEN DSTPORT, 80 , 0 ,
f i l t e r e q u a l } ,

3 { 0 , 0 , 0 , 0 , NULL }
4 } ;
5
6 s t r u c t r e l a t i v e g r o u p f i l t e r r u l e

group module branchA [4] = {
7 { data−>o f f s e t s . srcaddr , LEN SRCADDR, data−>

o f f s e t s . srcaddr , LEN SRCADDR, 0 ,
g f i l t e r r e l e q u a l } ,

8 { data−>o f f s e t s . dstaddr , LEN DSTADDR, data−>
o f f s e t s . dstaddr , LEN DSTADDR, 0 ,
g f i l t e r r e l e q u a l } ,

9 { data−>o f f s e t s . Last , LEN LAST, data−>o f f s e t s .
F i r st , LEN FIRST, 1 , g f i l t e r r e l l e s s t h a n
} ,

10 { 0 , 0 , 0 , 0 , 0 , NULL }
11 } ;
12
13 s t r u c t grouper aggr group aggr branchA [6] = {
14 { data−>o f f s e t s . srcaddr , LEN SRCADDR,

ag g r s t a t i c } ,
15 { data−>o f f s e t s . dstaddr , LEN DSTADDR,

ag g r s t a t i c } ,
16 { data−>o f f s e t s . dOctets , LEN DOCTETS, aggr sum

} ,
17 { data−>o f f s e t s . t c p f l a g s , LEN TCP FLAGS ,

agg r o r } ,
18 { data−>o f f s e t s . dstport , LEN DSTPORT,

aggr un ion } ,
19 { 0 , 0 , NULL }
20 } ;
21
22 s t r u c t a b s o l u t e g r o u p f i l t e r r u l e g f i l t e r b ranchA

[2] = {
23 { 3 , 0x13 , 0x13 , g f i l t e r a n d } ,
24 { 0 , 0 , 0 , NULL }
25 } ;

Figure 4: Sample C struct arrays, filled with content
representing branch A of the flow query as shown in
figure 2

1 s t r u c t m e r g e r f i l t e r r u l e m f i l t e r [4] = {
2 { 0 , 0 , 1 , 1 , 0 , m f i l t e r e q u a l } ,
3 { 0 , 4 , 1 , 4 , 0 , m f i l t e r l i s t e q u a l }
4 { 0 , 2 , 1 , 2 , 0 , m f i l t e r l e s s t h a n } ,
5 { 0 , 0 , 0 , 0 , 0 , NULL }
6 } ;

Figure 5: Sample C struct array, filled with content
representing the merger of the flow query as shown
in figure 2

6

given by a parsed flow query file.

The overall idea is, that each processing stage is given an
array of structs that describe the filtering being done in
that stage - be it absolute or relative filtering. For that,
the struct arrays contain data about the field to be com-
pared (field offset and length) and the value to compare it
to. This can be another field for the grouper operation or a
static value for the filter and groupfilter stage. Additionally
every comparison operation takes a delta value to allow for
checks with an epsilon margin. The last entry of each of
the structs is a function pointer to the operation that is
to be carried out. These functions take as arguments the
record ids to be compared and the fields, offsets and delta
specified in the structs. The comparison functions retrieve
the fields from the records according to their offset and field
length and return the result of the requested comparison.
Using function pointers as arguments avoids to check for
the operation to be carried out in a switch statement on
each comparison.

The group aggregation specifications of line 13-20 in figure
4 are similar but specify the field offset and according field
length to be aggregated together with a function pointer
to an aggregation operation. The aggregation function will
then either assign the value of the first record (aggr static)
or traverse all records in that group and return results that
are a sum, count, union or intersection of those.

The merger rules that are depicted in figure 5 show relative
comparison rules of groups from each branch. The integers
depict the branch the aggregated value comes from, the ag-
gregated value index in order as they are specified in the
aggregation rules of figure 4, a delta and a function pointer
for the comparison operation to be carried out.

The implementation of the filtering stages is then straight
forward. The filter and groupfilter just traverse through
all flow records or flow groups respectively and check each
of them for compliance with the supplied filtering rule by
an appropriate call to the function the supplied function
pointer points to. The grouper and merger on the other
hand operate in O(n2) and (O(nk)) respectively, where k

is the number of branches, so k = 2 in this case by just
comparing every flow record with any other or every group
with any other, respectively. This is optimized in the way
that a record can not be part of more than one group and if
it is, it is not checked again in subsequent checks.

What can currently not be specified on the fly and is re-
ally hardcoded is the arrangements of the pipelines. While
it is possible to create as many branches as necessary it is
not possible to skip the filter or groupfilter stages yet. A
fact connected to that is, that in contrast to the Python
implementation, the C implementation strictly adheres to
the overview given in figure 1 whereas the Python imple-
mentation was switching the splitter and filter around for
performance issues. Since the C implementation passes flow
record pointers around, this is no longer a bottleneck.

The C implementation not yet complete though. While it
can already handle simple queries as in Figure 2, it can
not yet execute queries with more than one module in the

number runtime old runtime new
of records Python Flowy in s C Flowy in s

103k 1177 0.3
337k 20875 3.4
656k 70035 13
868k 131578 23
1161k 234714 (2.7 days) 86

Table 1: runtime for http-download.flw

grouper or merger and can also not yet aggregate fields with
the union or intersect operation since those would require
the storage of arrays of integers instead of a single integer
for all the other aggregation operations.

Despite these facts the current implementation seems to
work correctly as the correct output was generated when
testing it with a very few records with known outcome to a
given query (again, the query depicted in figure 2 was used).

6. BENCHMARKS
A comparison of Python Flowy to the current C core of
Flowy is very difficult and can not be done as accurately as
one would like to. This is due to many reasons. Firstly, the
reimplementation of the Flowy core is only the core without
the additional surroundings that make the Python Flowy
imlpmentation useable. Secondly the C implementation still
lacks many features and thus only limited comparison is pos-
sible.

To compare the two implementations anyways, the flow query
given in figure 2 was taken and the two things the C flowy
implementation can not yet do were removed from it: union
aggregation and the OR in the merger. Then the query was
put into the C code, which basically equals what can be seen
in figures 4 and 5. I ran the query on a trace that was taken
from normal laptop usage over the course of 14 days which
make up to about 1.1 million records. To find out each of
the implementations dependency on input record number, I
created four additional traces, each being a smaller subset
of the original.

Due to the extensive runtime, the benchmarks with Python
Flowy were only done once while for the C implementation
there were done six runs where the first one was discarded
due to possible influences of caching and the result of the
last five was averaged.

As one can see in table 1 the values differ tremendously.
The values achieved for the C implementation are not very
surprising. If one considers that from the 1.1 million records,
after the filtering only 150.000 are left and that the grouper
operates in less than quadratic complexity because it doesnt
check records that already belong to a group then this boils
down to only a few million comparisons in the grouper stage
and even fewer in the merger as the groups are also filtered.
And doing a few million comparisons in C does not take
much time. Most of the time is probaby spend with malloc
and memcpy when the datastructures are set up.

On the other hand the Python implementation is calculating
for almost 3 days on the 1.1 million record set. While it is not

7

the purpose of this paper to explain why that is, some parts
of the code give the impression that the merger, that takes
the biggest chunk of runtime is actually having a complexity
of O(n3) which probably a bug (at least it could not be made
out why the certain piece of code that leads to O(n3) would
be necessary) but the issue was not investigated further since
the code is to be replaced anyways.

The important fact is, that a query of how it is required by
the Flowy idea can be implemented in a way such that the
runtime is finally in an area that is managable - even though
the complexity is still nearly quadratic. It could be argued
that some parts of the original http-download.flw query were
missing but it is highly unlikely that those additional filter
conditions would lead to runtimes of a higher order of mag-
nitude.

7. OUTLOOK
Despite the work already accomplished there is not only still
much to be done but also many ways to drastically improve
Flowy’s performance by even more orders of magnitude.

7.1 Work to be done to make Flowy fully func-
tional again

As explained above, despite lots of work already being done
on the python and C code, the remaining bit is to integrate
those two. The python code will serve to parse and validate
a flow query file and build the datastructures that are then
handed over to the C code that does all the hard work. The
core will then give the filtered records back to the python
wrapper that cares about their presentation to the user.

7.2 Further Improvements to Flowy’s Core Al-
gorithm

Since benchmarking was so far only done with up to 1.1
million flow records and only two branches in the query, the
current complexity of the parsing algorithm of O(n2) for the
grouper and O(nk) (where k is the number of branches, so
k = 2) for the merger still does not result in unmanageable
running times. But with more records and with queries in-
volving more than two branches or with more than one mod-
ule for the grouper and merger this complexity will have too
big of an impact on the runtime.

7.2.1 Search with Trees
So to improve the situation one should build a B-tree like
search tree over the data that is to be traversed. Build-
ing the tree will be have a complexity of O(n log(n)) and
lookups will have a complexity of O(log(n)). B+trees are
especially suited for the desired purpose as they still allow
to traverse the indexed data sequentially. This way it will
not only be possible to retrieve records for a specific key but
also continue traversing records starting with that key in as-
cending or descending order. Such trees have to be build for
the grouper and merger execution. The filter and groupfil-
ter both traverse data linearly and hence cannot be better
than O(n). As an example, before executing the grouper,
Flowy would check what fields will be compared. For each
field type that is to be compared, Flowy would then create
an array of record pointers where the pointers are ordered
by that field and also the B-tree with pointers to the proper

records in the leafs. Suppose a grouping module that checks
for equality of source address of one record to the destina-
tion address address of another record. The grouper would
now traverse the records (O(n)) and for each record find
records that are of the same destination address (O(log(n))).
Hence the whole grouping operation would be operation of
O(n log(n)). There have been done preliminary tests with
that approach but as those did not get further than the ex-
ample that was just explained the work is not yet fully tested
or included here.

7.2.2 Reducing Amount of Work in Innermost Loops
by Specialized Functions

The individual fields of flow records are having different
sizes: unsigned char, unsigned short and unsigned int.
To save as much memory as possible for storing the flow
records in memory, every flow records is stored as a char ar-
ray of the exact required size. Access to the data is given by
the offset of the data and knowing the size of a field. As com-
parisons in filters and modules are specified with function
pointers, every comparison operation operation does not
only take the fields that are to be compared as an argument
but also their length and their offsets in a flow record. Thus,
for every comparison operation there is currently a check for
the length of the input fields to properly cast the values from
the character arrays. This check could be avoided if for every
combination of flow records and for every operation there
was one function taking care of explicitly that operation.
This way one would not call the filter_rel_equal function,
passing as arguments the flow records array, the records to
be compared and their offsets and their lengths but a func-
tion like filter_rel_equal_srcaddr_dstaddr. Each such
function would not need to do any additional checks for in-
put field lengths and would be reduced to the bare compar-
ison operation. Since such comparisons are the innermost
loop element of the filter, grouper, groupfilter and merger
their optimization might yield significant performance in-
creases. The only downside to that would be, that to ac-
commodate for all combinations of comparison functions and
input values a total of 20691 functions would be needed. It
would be 19 operations (6 integer comparisons, 13 Allen’s in-
terval operations) times 33 possible flow record fields squared
when relative comparison is done in the group filter. For an
overview of all possible comparison operations, see figure
2. What sounds unmanageable in numbers could be man-
aged by just auto generating the C code for all the required
functions before compilation. Python code that does that,
is already written for testing purposes and shows that the
overhead of memory consumption to store all of them would
be just about 3.0 MB which is thought to be small enough
to be worth further investigations.

7.2.3 More Efficient Multithreading
Currently, multithreading is limited to exactly one thread
for each branch. This means that only the filter, grouper
and groupfilter are running on more than one core and also
that the number of threads does depend on the query be-
ing executed. It would make more sense to auto-detect the
amount of available cores and also have a customizable con-
figuration option that distributes work to an appropriate
number of threads. This should be done for tasks that are
currently single threaded (merger, ungrouper) but also for

8

symbol operation name

= equal as integer comparison
!= not equal
< less than as integer comparison
> greater than as integer comparison
<= less than or equal
>= greater than or equal
= equal as Allen’s interval relation
< before
> after
m meets
mi meets inverse
o overlaps
oi overlaps inverse
s starts
si starts inverse
d during
di during inverse
f finishes
fi finishes inverse

Table 2: Integer comparisons and Allen’s interval re-
lations. Integer comparisons are done between indi-
vidual fields of records, Allen comparisons are done
between start and end times of two records.

the individual branches if enough cores are available. For
example, executing a query using two branches on a quad
core would potentially be more efficient if each branch could
make use of two of the cores and if the merger would not
run on only one core but on all four of them.

Pitfalls of this approach would certainly be the much in-
creased complexity of sharing memory between different threads.
The current multithreaded implementation doesnt have such
issues as the data used by both branch threads, the records
are not being changed but only read by the threads. Ad-
ditionally the result of both threads is only used once both
are joined. In a setup as described above, one would have
to distribute tasks over a number of N threads for the filter,
grouper and groupfilter and find an efficient algorithm that
does the same for the merger. As a very simple approach
to solve that problem a small pthread library was written
that for N threads distributes every Nth task to each of
the dynamically created thread pools such that each thread
handles 1

N
th of the total amount of tasks. This is assuming

that such a simple splitting of the work will still lead to all
threads taking approximately the same amount of time to
finish their tasks. As work on that was also not extended
further than the implementation of the aformended library
it also didnt become part of this thesis but will remain for
future investigation.

7.2.4 More Functionality
Additional functionality that is currently missing is the sup-
port for nfdump based flow traces, more comparison oper-
ations (like the and operators: “much less than” and
“much more than”), an intersect aggregation operation as
the companion of the union operation and the possibility to
specify all filters in conjunctive normal form. This would
mean that for all filters or modules one would give a list

of comparison criteria which would all be AND’ed but one
could also always use the OR keyword in a line.

8. CONCLUSION
Flowy was suffering from great slowness due to performance
critical parts being implemented in Python. The improve-
ments being done on the Python code and the rewrite of
Flowy’s core in C though show, that tremendous improve-
ments can be achieved by just using C and more efficient
data structures and memory.

The Python Flowy implementation is still more powerful
than the C implementation but adding the missing parts to
the C code is not a problem and only a matter of time.

It seems, that in contrast to the day-long running times
that made the Python Flowy experience very disappointing,
it is possible to combine a powerful query language with fast
execution time.

9. REFERENCES
[1] J. F. Allen. Maintaining Knowledge About Temporal

Intervals. Communications of the ACM,
26(11):832–843, 1983.

[2] F. Alted, I. Vilata, et al. PyTables: Hierarchical
datasets in Python. http://www.pytables.org/, 2002–.

[3] D. M. Beazley. Ply (python lex-yacc).
http://www.dabeaz.com/ply/, 2001–.

[4] S. Behnel, R. Bradshaw, and D. S. Seljebotn. cython.
http://cython.org/, 2008–.

[5] S. Behnel, R. Bradshaw, and D. S. Seljebotn. cython
closures branch.
http://hg.cython.org/cython-closures/, 2008–.

[6] B. Claise. Cisco Systems NetFlow Services Export
Version 9. RFC 3954, Cisco Systems, Oct. 2004.

[7] B. Claise. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of IP
Traffic Flow Information. RFC 5101, Cisco Systems,
Jan. 2008.

[8] M. Folk, R. E. McGrath, and K. Yang. Mapping
HDF4 Objects to HDF5 Objects. Technical report,
National center for supercomputing applications,
University of Illinois, 2002.

[9] M. Fullmer. flow-tools.
http://www.splintered.net/sw/flow-tools/, 2001–.

[10] P. Haag. nfdump. http://nfdump.sourceforge.net/,
2004–.

[11] K. Kanev, N. Melnikov, and J. Schönwälder.
Implementation of a stream-based ip flow record query
language. In AIMS, pages 147–158, 2010.

[12] V. Marinov and J. Schönwälder. Design of a
Stream-Based IP Flow Record Query Language. In
DSOM ’09, pages 15–28, Berlin, Heidelberg, 2009.
Springer-Verlag.

[13] J. Quittek, B. Claise, P. Aitken, and J. Meyer.
Information Model for IP Flow Information Export.
RFC 5102, Cisco Systems, Jan. 2008.

[14] G. V. Rossum. The Python Language Reference
Manual. Network Theory Ltd., Sept. 2003.

9

