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Abstract—We present an efficient method to partition a point
cloud gathered through kinematic laser scanning into static and
dynamic points. The presented algorithm utilizes a voxel grid
data structure and uses a ray intersection test to mark voxels
as dynamic. The algorithm does not require any ego-motion
estimations, computationally expensive object recognition or
tracking of moving objects over time. It is easy to implement and
can be executed on many cores in parallel. We show the viability
of this approach by applying our algorithm to a dataset that we
gathered by mounting a FARO Focus3D Laser scanner onto a
skid which was then sent along a production line for consumer
car chassis in a factory of the Volkswagen corporation. Since
factory operators are interested in acquiring digital models of
their production lines without suspending factory operations,
the resulting point cloud will contain many dynamic objects
like humans or other car bodies. We show how our algorithm
is able to successfully remove these dynamic objects from the
resulting point cloud with minimal errors. Our implementation
is published under a free license as part of 3DTK.

I. INTRODUCTION

Due to increasing demands, ever increasing expectations

of today’s consumers and growing competition, car manufac-

turers are faced with having to offer a larger variety of car

models than ever and to innovate with new models in ever

quicker succession. This increase in variety requires that the

production facilities are flexible enough to remain compatible

with new requirements and thus competitive. In consequence,

car factory operators are forced to repeatedly assess the

ability of existing production lines for their viability to man-

ufacture a newly designed car body. The question essentially

is: does the new car model fit through all steps of the

production process without colliding with the environment

and while keeping an appropriate safety margin to it?

These assessments were so far carried out through manual

surveys and required the suspension of the running pro-

duction [1]. Since manual measurements are error prone

and halting production incurs monetary losses it would be

desirable to carry out all required collision tests and distance

measurements on a digital model of the factory.

But most existing factories were erected at a time where

digital planning didn’t exist yet and then grew organically

from that point on. Thus, regular 3D scans are the best option

for factory owners to create a digital model and to keep it

up-to-date with the structural reality of the factory.
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While terrestrial scanning techniques have the advantage

of higher precision over kinematic laser scans, terrestrial

laser scans have the disadvantage, that operators have to find

fitting scan locations. Oftentimes these do simply not exist

because factories are built with maximum volume utilization

in mind, so there is little free space. Terrestrial scans become

completely impossible in situations where the car bodies are

sent through narrow tunnels or elevator shafts.

Thus, in 2014, we presented a system that mounted a

FARO Focus3D laser scanner on a skid that would otherwise

transport a car body along the production line [2]. That

system is sent along the production line, while continuously

scanning its surroundings. This system is not only able to

record all features along the production line that are signif-

icant for collision detection queries, but also automatically

produces the trajectory new car bodies take. In 2016 we

have shown the feasibility to carry out collision detection

queries on the resulting datasets [3] on CPU and GPU

platforms using state-of-the-art algorithms for each platform

with comparable performance results.

The last fundamental building block for full automation of

the pipeline is presented in this paper. So far, recorded scans

included numerous points along the production line, that are

not part of the static factory structure but indeed belong to

dynamic objects like humans working close to the production

line. Without removal of all dynamic objects, an operator

would be faced with many false positive results during any

collision detection query. Thus, now we present a method to

clear the collected scans from any dynamic points.

This paper is organized as follows. After discussing related

work in the following section, we describe the conceptual

design of our algorithm in section III and implementation

details in section IV. In section V we present results of

our algorithm on scans that we took via mobile mapping

along a production line of a Volkswagen factory for consumer

car assembly. Section VI discusses the performance of our

implementation of the algorithm. We conclude this paper with

a section on future work in section ?? before we draw our

conclusion in the last section.

II. RELATED WORK

The authors of [4] and [5] also use a voxel data structure

to distinguish between static and dynamic sections of the

recorded point cloud but instead of recording free voxels, they

count how often a voxel is occupied. Due to the restrictions of

this approach as explained in the following section, they have



to make a number of assumptions about their environment

and employ several heuristics that are not necessary with

our algorithm. Furthermore, their approach requires a ground

surface estimation — in contrast to our approach which

works with any arbitrary environment.

The creators of OctoMap [6] also use the same algorithm

as we do by Amanatides and Woo [7] to cast rays. But

instead of voxels they use an oct-tree data structure to find

free volumes. They also employ a similar approach to avoid

marking volumes as free in situations where rays meet a

surface at a very shallow angle by grouping multiple scan

slices together.

Besides voxels and oct-trees other data structures to store

occupation information in are elevation maps [8], [9], multi-

level surface maps [10], Gaussian Mixture Model [11], [12].

Existing methods that require computation of free volume

for robotic path planning are known to use a 3D Bresenham

ray casting kernel [13] carrying out the ray casting in

many parallel threads on the GPU. GPU-based ray casting

techniques were first shown by [14] and [15] and are today

often implemented using OpenGL and CUDA [16].

A related topic is 3D change detection. The authors of [17]

project the points from one scan into the spherical coordinate

system of another and then use angular neighbors to find

those points in the first scan that the latter was able to see

through and which can thus be classified as dynamic. While

their approach is very efficient for a single pair of scans,

runtime increases quadratically with increasing number of

input scans. The authors of [18] also reason about the volume

occupied by laser rays and fuse multiple rays into a larger

volume using the Dempster-Shafer theory.

III. DESIGN

Our initial approaches were inspired by how humans tend

to distinguish between static and dynamic objects: If an

object is seen as immobile for long enough, then we will

classify it as static. While this approach would probably

work well for a scanner with a static position (relative to

the environment that we consider static), it seems to be an

unfeasible approach in the mobile mapping scenario. Due to

the scanner moving and the resulting variable occlusion of

objects, it is hard to calculate how long an object should be

visible (and not vanish because of an occlusion). Further-

more, without prior knowledge about whether the occluding

object is actually static (and its occluded volume can thus

be trusted) a chicken-and-egg problem is created where we

need to know about which objects are static before we can

consider them for occlusion testing.

Thus, instead of counting how long an object is seen

as static, our algorithm does the opposite and instead tests

whether any seen object was at any point in time in fact see-

through. Since we want to avoid any higher-level processing

like object recognition, our “objects” here are the voxels of

a regular voxel grid. This data structure has the advantage,

that it is computationally easy to enumerate all voxels along

a ray (a line of sight).

Another advantage of this approach is, that we do not need

to keep count of how often a given voxel has been seen with
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(a) The scene as scanned from a
center position. The scanner mea-
sures the green points.
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(b) The scene as scanned from a
position to the right. The circular
object in areas C1 and C2 moved
away and its former position is
marked with dotted lines. The
scanner measures the red points.

Fig. 1: The algorithm applied to a 2D scenario. The gray

raster marks the 2D voxel (pixel) boundaries. Blue lines mark

the scanner lines of sight. Dark lines are object boundaries.

Gray areas mark solid space while white areas mark free

space. Round dots represent the measured scan points of the

first scan (top) in green and of the second scan (bottom) in

red.

points in it (depending on the scanner position and possible

occlusion) but that instead, seeing a voxel as free only during

a single scanner rotation is indication enough that the points

that were otherwise seen in it the rest of the time must in

fact be dynamic. An additional advantage of this approach

is, that it will automatically not remove points that were only

seen very seldom.

Consider figure 1. It displays our algorithm as applied in

a two-dimensional scenario. The circular object in areas C1

and C2 is dynamic and only seen by the first scan (figure 1a).

Since the second scan (figure 1b) measures the red points in

A2 and B2 with a line of sight that crosses area C1, it must

mean that the points that were measured in C1 in the first

scan can be classified as dynamic.

Figure 1 also shows how the algorithm does not remove

points from areas that were only visible in a single scan.

For example the green points in areas A3 and A4 are only

seen from the central scanner position in figure 1a. Still, they

are not removed because these areas are never marked as see-

through by other scans (for example the second scan in figure

1b). The same holds for the red points in area C2. They are

only seen by the second scan in figure 1b because the circular

moving object in C1 and C2 occludes the points during the

first scan in figure 1a. Still, the points remain classified as

static because their containing areas are never marked as see-

through.

IV. IMPLEMENTATION

The implementation of the algorithm outlined in the last

section is based on carrying out repeated voxel-walks along

all voxels from each scanner position to the target points.

The voxels that are traversed by this search up to the target



point are then marked as free up to conditions laid out in the

rest of this section.

The voxel grid is implemented using a hash-map. Thus,

reading and writing from and to the voxel grid is possible

in O(1). Furthermore, memory is only spent on occupied

voxels.

Since the input data is acquired through mobile mapping,

the input to the algorithm are the individual registered scan

slices. Each scan slice comprises all measurements of a single

mirror rotation. A single rotation of the scanner itself thus

comprises a multitude of individual scan slices. Figure 1 can

also be seen as a top-view on a three-dimensional scene that

was recorded in this fashion (with the scanner being static in

each figure). Then, each of the points in each figure would

have been recorded in a different scan slice. Scan slices are

indexed with unique integers.

The algorithm starts by reading all registered scan slices as

well as the scanner positions that each slice was taken from

into a global coordinate system. For each point, the scan slice

index where the point was measured from is preserved.

In a next step, a voxel grid is created. We iterate through

all points in the global coordinate system, find the voxel that

they would fall into, and then store the scan slice index that

the point belongs to in the voxel as a set data structure. Thus,

the voxel grid does not store the point coordinates. Instead

it only stores the set of scan slice indices of which points

were seen in each voxel. This means, that we usually store

less data points in each voxel than the number of points that

would fall into that voxel because depending on the voxel

size and density of the scan, it is likely, that a voxel contains

many points of the same slice index.

Finally, the algorithm iterates over all scan slices and the

associated scanner position that each slice was taken from.

Starting from the corresponding scanner position of each

slice, a ray is shot to each point recorded from that position.

Each such ray is then traversed through the voxel grid at

most up to the target point. All voxels up to the final voxel

that are intersected by the ray are marked as free.

To do the traversal we use an algorithm that is inspired

by the work shown in [7]. This algorithm in essence is

a 3D variant of the Bresenham algorithm and is used by

several software projects like the Point Cloud Library (PCL)

[19] and OctoMap [20]. We enhanced the original voxel

traversal algorithm presented in [7] to support negative voxel

coordinates, casting rays exactly parallel to the voxel grid

boundaries, casting rays exactly alongside voxel boundaries

and casting a ray starting exactly from a voxel boundary.

We also modified the algorithm such that instead of repeated

addition of floating point numbers, we multiply a counter by

the step size. This is to prevent escalation of small floating

point errors after multiple additions (0.1+0.1+0.1 is unequal

3 times 0.1) and is especially necessary in cases where the

ray is nearly parallel to the voxel grid boundaries. The cost

of this added exactness is just one multiplication instruction

more per loop iteration.

One problem remains. To illustrate it, one can take for

example the scan slice that resulted in measurement of the

green point in area A4 of figure 1a. Clearly, the line of sight

from the scanner towards this point (in blue) passes through

area B2. Still, that area should not be marked as free. We

solve the problem that partly occupied voxels impose by

looking at the neighbor slices of the current scan slice. If the

line of sight passes through voxels that also contain points

from scan slices adjacent to the scan slice of the current

target point, then these voxels are not marked as free and

the voxel-walk aborts early without marking the any further

voxels as free.

The idea here is, that while we are tracing lines of sight

towards individual points, we also always take a sliding

window of their neighborhood into account. This technique

is similar to the one presented in [6] to avoid removal of

points when scanning surfaces with a small incident angle

of the laser beam. The size of the window is best chosen to

be large enough such that the central slice does not share

any voxels that we are interested in with the most outer

slices. Obviously, the starting voxel of most rays will be

shared by many slices, but having marked the starting voxel

as free poses no problem as we can probably assume that

the space that the scanner was moved through was free to

begin with. At the same time, the window size should not be

too large. For example it should not happen that the window

contains slices that record points of the same object from

two completely different scanner rotations. To satisfy both

constraints, one input to our algorithm is the number of slices

that the scanner records in one full rotation. The window size

is then chosen as half that size. This ensures that the “field

of view” is large enough to consider adjacent partly occupied

voxels and that it is not so large as to have the same object

twice in a single “field of view”. An additional assumption

here is also that the scanner is never turned quickly enough

against its own orientation such that this constraint would be

violated. In current practical setups in factory environments,

this is not likely to happen.

At this point of the algorithm a ray has been shot toward

each point in the scan and the traversed voxels have been

marked as free. A last loop iterates through all points in the

scan and marks each point either as dynamic or as static,

depending on whether the point falls into a voxel that was

marked as free or a voxel that was not, respectively.

The main part of the algorithm (shooting rays at every

point and walking along all voxels traversed by the ray)

can trivially be parallelized. This is, because this part of

the algorithm only requires read-only operations (of point

and voxel coordinates). The only write operation (marking

voxels as see-through) can be done concurrently without

individual threads interfering with each other as this part

of the algorithm never queries whether a voxel was earlier

marked as see-through or not.

The implementation of the algorithm was done in C++

with multithreading through OpenMP and using the library

std::unordered_map to represent the voxel grid. It is

published under the terms of the GNU General Public license

3 as part of 3DTK – The 3D Toolkit [21].



V. RESULTS

To test our method, we used a data set that we collected

with a FARO Focus3D laser scanner in factories of the

Volkswagen AG and with initial pose estimations coming

from a setup supplied by the Measurement in Motion GmbH.

The acquired data (comprised of individual scan slices) was

registered using a semi-rigid SLAM approach [22] and then

processed with our software to partition the point cloud

into static and dynamic points. The dataset comprises 398

thousand scan slices with overall 350 million points. Since

an operator is only interested in the immediate volume around

the trajectory that a prospective new car model will take, we

limited the search for free voxels to a volume with a 2.5

m radius (so a 5 m diameter) around the trajectory. This

should be sufficient for most consumer car models which

rarely exceed a width or height of 2 m. We performed our

tests with a voxel size of 5 cm as this size is smaller than

the typically imposed security margins.

Unfortunately, data collected through mobile mapping is

by its nature more noisy than data collected through terrestrial

scans. This means, that surfaces easily appear noisy in the

global coordinate frame. This in turn leads to an affect where

the presented approach would mark parts of that surface as

“see-through” simply because there existed points “behind”

the wall from the point of view of the laser scanner that were

misplaced there during the registration phase. To dampen the

effects of more noisy scans, we take three different measures.

Firstly, a pre-filter is applied to the dataset. This filter

examines each point of the dataset and removes it, if its

direct neighborhood does not contain more than a certain

number of points. For our dataset we applied a filter that

required at least 3 points to lie within a radius of 3 cm. The

application of this filter resulted in 11% of the former points

to be removed.

Secondly, instead of walking each ray up to the target point

we walk the ray up to a certain distance to the target point.

This makes sure that the voxels that are marked as free are not

accidentally part of the object that the target point belongs

to. To account for small angles of a cast ray relative to a

surface, we carried out the search up to 30 cm to each target

point.

Thirdly and lastly, since scanner precision decreases with

distance, we also decide not to follow the line of sight toward

points at all if they are more than a certain distance away

from the scanner. Since the factory environment is closely

packed with objects, a distance of 10 m was enough for our

setup.

Figure 2 shows a visualization of the result of our al-

gorithm. We omit an image of the original point clouds

for brevity. The topmost figure 2a shows the original point

cloud partitioned into static (yellow) and dynamic (pink)

points. As an additional example, figure 3 shows the resuls

of the algorithm at another point of the production line.

In the following we will use figure 2. One can make four

observations.

Firstly, nearly all humans have been removed from the

scene as they were detected as moving objects. This holds for

(a) The original scan partitioned into static (yellow) and dynamic
(pink) points.

(b) The original scan without dynamic points.

Fig. 2: A scene from a Volkswagen consumer car factory

with humans standing alongside or on the production line.

humans walking alongside the scanner as well as for humans

standing in the way of the scanner on the production line.

One can though see that some artifacts remain. On the left

hand side of figure 2b one can see some remaining points

that originally belonged to humans. These were not removed

because this group of humans remained standing there for

the whole duration of the scan and was thus not detected as

dynamic. Furthermore, there are some remains of scanned

shoe soles left on the floor. The latter artifacts decrease with

decreasing voxel size.

Secondly, the skid that the scanner was mounted on was

scanned by the scanner during every single scan rotation

and is thus part of the original scan in figure 2a and fills

the whole production line. The points representing the skid

were successfully classified as dynamic though without any

manual intervention and were thus removed in figure 2b

without any remains.

Thirdly, it is possible to see one fundamental drawback of

our approach. Objects that are “see-through” for the scanner

like glass, transparent plastic or thin lattices or meshes will be

declared as dynamic because the scanner is able to see objects

behind them. One can see this effect on the floor of the

production line (which was a fine mesh that allowed to see the

floor below) as well as in the background where transparent

plastic foil hanging from the ceiling was completely removed

in figure 2b.



(a) The original scan partitioned into static (yellow) and dynamic
(pink) points.

(b) The original scan without dynamic points.

Fig. 3: A scene from a Volkswagen consumer car factory

with humans walking or standing behind the production line

in front of a wall.

Fourthly, reflections can significantly alter the results. If

objects with a high reflectivity exist in the scene, then the

scanner will see objects as if they were “behind” the mirror.

This not only leads to the mirror being marked as dynamic,

but also static objects behind the mirror to become “see-

through” and thus marked as dynamic. See figure 4 for

a visualization of the problem. But mirrored points are a

fundamental problem any 3D scan and that problem has to

be solved at a different level.

Unfortunately, we didn’t have the opportunity to take

terrestrial scans of the scene because we didn’t foresee

ourselves using this data for the purposes of non-static point

removal at the time that the scan was taken. Otherwise, a

comparison of the result of our algorithm as shown in figures

2b and 3b with an actual human-free point cloud might have

made it easy to quantify the quality of our approach. On the

other hand, the quality of our approach is heavily dependent

of how well the original scan registered. So it is likely that

any such comparison to a terrestrial scan will instead become

a comparison between the mobile mapping approach and the

terrestrial approach.

VI. PERFORMANCE

We tested our algorithm on an Intel Xeon e5-2630 v3

Desktop system with 8 physical cores with 2.4 GHz each.

(a) “Holes” in the wall created by points (in red) recorded behind
the wall. The points are not exactly aligned with the holes due to
parallax.

(b) Top-view of the scene, showing the same points behind the wall
(in red).

Fig. 4: The high reflectivity of surfaces commonly found in

factory environments poses a great challenge. The wall in the

top figure has holes because of reflected points “behind” the

wall (in red). These points are false as the wall is solid and

the area on the right in the bottom figure should be empty.

Due to HyperThreading we used 16 threads in our tests to

make use of all virtual cores. As we expected the performance

to depend on the input size, we recorded the run time of our

algorithm for 100 different input sizes from just 1000 scan

slices up to 100000 scan slices. Each scan slice contains 877

points on average, so we test our algorithm on input point

clouds ranging from 877 thousand up to 87.7 million points in

size. Since the performance of the algorithm heavily depends

on the geometry of the point cloud, we took 130 samples

from random locations in our test data for each of the 100

different input sizes and then used the median run time.

The results of our measurements can be seen in figure 5.

The figure displays the performance of the algorithm as a

measure of scan slices the algorithm is able to process per

second. One can observe that the algorithm processes each

slice faster if the overall input size is small. As the overall

size of the input point cloud grows, the time our algorithm

spends on each slice becomes more constant. Thus overall

we can say that our algorithm scales linearly with the input

size.



2800
3200
3600
4000
4400
4800
5200

0 20000 40000 60000 80000 100000
Fig. 5: The x-axis shows the number of scan slices given

to the algorithm. The y-axis shows the performance of the

algorithm as a measure of the number of slices that the

algorithm is able to process per second. One can see that the

algorithm is faster with less input but shows an asymptotic

behaviour with larger input.

VII. CONCLUSIONS

We presented an algorithm that is able to partition a

point cloud into static and dynamic points in a simple and

straight forward manner. Using the example of kinematic

laser scans taken from an automotive production line, we

have shown how our algorithm successfully removes dynamic

objects like humans from the resulting point cloud with a

minimal number of false positives. The algorithm doesn’t

make assumptions about the structure of the underlying point

cloud data, is easy to implement and can trivially be executed

in parallel.

Needless to say, a lot of work remains to be done. In the

future we want to expand our method to terrestrial laser scans,

further reduce the amount of false positives and explore more

efficient data structures than a voxel grid as for example

provided by OctoMap.
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